Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
BLER-based Adaptive Q-learning for Efficient Random Access in NOMA-based mMTC Networks
TRAN, Duc Dung; SHARMA, Shree Krishna; CHATZINOTAS, Symeon
2021In Proceedings of 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)
Peer reviewed
 

Documents


Texte intégral
FINAL VERSION.pdf
Preprint Auteur (278.24 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
BLER; MTC; NOMA; Q-Learning; short-packet communications
Résumé :
[en] The ever-increasing number of machine-type communications (MTC) devices and the limited available radio resources are leading to a crucial issue of radio access network (RAN) congestion in upcoming 5G and beyond wireless networks. Thus, it is crucial to investigate novel techniques to minimize RAN congestion in massive MTC (mMTC) networks while taking the underlying short-packet communications (SPC) into account. In this paper, we propose an adaptive Q-learning (AQL) algorithm based on block error rate (BLER), an important metric in SPC, for a non-orthogonal multiple access (NOMA) based mMTC system. The proposed method aims to efficiently accommodate MTC devices to the available random access (RA) slots in order to significantly reduce the possible collisions, and subsequently to enhance the system throughput. Furthermore, in order to obtain more practical insights on the system design, the scenario of imperfect successive interference cancellation (ISIC) is considered as compared to the widely-used perfect SIC assumption. The performance of the proposed AQL method is compared with the recent Q-learning solutions in the literature in terms of system throughput over a range of parameters such as the number of devices, blocklength, and residual interference caused by ISIC, along with its convergence evaluation. Our simulation results illustrate the superiority of the proposed method over the existing techniques, in the scenarios where the number of devices is higher than the number of available RA time-slots.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
TRAN, Duc Dung ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
SHARMA, Shree Krishna ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
BLER-based Adaptive Q-learning for Efficient Random Access in NOMA-based mMTC Networks
Date de publication/diffusion :
avril 2021
Nom de la manifestation :
2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Helsinki, Finlande
Date de la manifestation :
from 25-04-2021 to 28-04-2021
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)
Pagination :
1-5
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR13713801 - Interconnecting The Sky In 5g And Beyond - A Joint Communication And Control Approach, 2019 (01/06/2020-31/05/2023) - Bjorn Ottersten
Intitulé du projet de recherche :
FNR-funded project CORE 5G-Sky (Grant C19/IS/13713801)
Organisme subsidiant :
FNR and ERC
Disponible sur ORBilu :
depuis le 15 mars 2021

Statistiques


Nombre de vues
320 (dont 30 Unilu)
Nombre de téléchargements
313 (dont 17 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu