[en] Using a modified foam evaluation, we give a categorification of the Alexander polynomial of a knot. We also give a purely algebraic version of this knot homology which makes it appear as the infinite page of a spectral sequence starting at the reduced triply graded link homology of Khovanov--Rozansky.
Disciplines :
Mathématiques
Auteur, co-auteur :
ROBERT, Louis-Hadrien ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Wagner, Emmanuel; Université de Paris > IMJ-PRG
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A quantum categorification of the Alexander polynomial
Date de publication/diffusion :
2021
Titre du périodique :
Geometry and Topology
ISSN :
1465-3060
eISSN :
1364-0380
Maison d'édition :
University of Warwick, Coventry, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR12246620 - Geometry, Probability And Their Synergies, 2017 (01/01/2019-30/06/2025) - Hugo Parlier
D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443–1499 MR Zbl
C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883–927 MR Zbl
S Cautis, Remarks on coloured triply graded link invariants, Algebr. Geom. Topol. 17 (2017) 3811–3836 MR Zbl
J H Conway, An enumeration of knots and links, and some of their algebraic properties, from “Computational problems in abstract algebra” (J Leech, editor), Pergamon, Oxford (1970) 329–358 MR Zbl
N Dowlin, A categorification of the HOMFLY-PT polynomial with a spectral sequence to knot Floer homology, preprint (2017) arXiv 1703.01401
N Dowlin, Knot Floer homology and Khovanov–Rozansky homology for singular links, Algebr. Geom. Topol. 18 (2018) 3839–3885 MR Zbl
N M Dunfield, S Gukov, J Rasmussen, The superpolynomial for knot homologies, Exp. Math. 15 (2006) 129–159 MR Zbl
M Ehrig, D Tubbenhauer, P Wedrich, Functoriality of colored link homologies, Proc. Lond. Math. Soc. 117 (2018) 996–1040 MR Zbl
A P Ellis, I Petkova, V Vértesi, Quantum gl1j1 and tangle Floer homology, Adv. Math. 350 (2019) 130–189 MR Zbl
P Freyd, D Yetter, J Hoste, W B R Lickorish, K Millett, A Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239–246 MR Zbl
N Geer, B Patureau-Mirand, Multivariable link invariants arising from sl(2j1) and the Alexander polynomial, J. Pure Appl. Algebra 210 (2007) 283–298 MR Zbl
A Gilmore, Invariance and the knot Floer cube of resolutions, Quantum Topol. 7 (2016) 107–183 MR Zbl
C Kassel, V Turaev, Braid groups, Graduate Texts in Math. 247, Springer (2008) MR Zbl
L H Kauffman, H Saleur, Free fermions and the Alexander–Conway polynomial, Comm. Math. Phys. 141 (1991) 293–327 MR Zbl
L H Kauffman, P Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992) 59–104 MR Zbl
M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359–426 MR Zbl
M Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045–1081 MR Zbl
M Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Int. J. Math. 18 (2007) 869–885 MR Zbl
M Khovanov, L-H Robert, Foam evaluation and Kronheimer–Mrowka theories, Adv. Math. 376 (2021) art. id. 107433 MR Zbl
M Khovanov, L Rozansky, Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387–1425 MR Zbl
P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301–364 MR Zbl
M Mackaay, M Stošić, P Vaz, sl(N)–link homology (N ≥ 4) using foams and the Kapustin–Li formula, Geom. Topol. 13 (2009) 1075–1128 MR Zbl
C Manolescu, An untwisted cube of resolutions for knot Floer homology, Quantum Topol. 5 (2014) 185–223 MR Zbl
H R Morton, S G Lukac, The HOMFLY polynomial of the decorated Hopf link, J. Knot Theory Ramifications 12 (2003) 395–416 MR Zbl
H Murakami, T Ohtsuki, S Yamada, HOMFLY polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325–360 MR Zbl
P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116 MR Zbl
P Ozsváth, Z Szabó, A cube of resolutions for knot Floer homology, J. Topol. 2 (2009) 865–910 MR Zbl
I Petkova, V Vértesi, Combinatorial tangle Floer homology, Geom. Topol. 20 (2016) 3219–3332 MR Zbl
J H Przytycki, P Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988) 115–139 MR Zbl
H Queffelec, D E V Rose, The sln foam 2–category: a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251–1339 MR Zbl
H Queffelec, D E V Rose, Sutured annular Khovanov–Rozansky homology, Trans. Amer. Math. Soc. 370 (2018) 1285–1319 MR Zbl
H Queffelec, D E V Rose, A Sartori, Annular evaluation and link homology, preprint (2018) arXiv 1802.04131
J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) MR Available at https://www.proquest.com/docview/305332635
J Rasmussen, Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031–3104 MR Zbl
L-H Robert, E Wagner, A closed formula for the evaluation of foams, Quantum Topol. 11 (2020) 411–487 MR Zbl
L-H Robert, E Wagner, Symmetric Khovanov–Rozansky link homologies, J. Éc. Polytech. Math. 7 (2020) 573–651 MR Zbl
R Rouquier, Khovanov–Rozansky homology and 2–braid groups, from “Categorifica-tion in geometry, topology, and physics” (A Beliakova, A D Lauda, editors), Contemp. Math. 684, Amer. Math. Soc., Providence, RI (2017) 147–157 MR Zbl
L Rozansky, H Saleur, Quantum field theory for the multi-variable Alexander–Conway polynomial, Nuclear Phys. B 376 (1992) 461–509 MR
G Torres, On the Alexander polynomial, Ann. of Math. 57 (1953) 57–89 MR Zbl
V G Turaev, The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 167 (1988) 79–89 MR Zbl In Russian; translated in J. Soviet Math. 52 (1990) 2799–2805
P Vaz, A categorification of the quantum sl(N)–link polynomials using foams, PhD thesis, Universidade do Algarve (2008) arXiv 0807.2658
O Y Viro, Quantum relatives of the Alexander polynomial, Algebra i Analiz 18 (2006) 63–157 MR Zbl In Russian; translated in St. Petersburg Math. J. 18 (2007) 391–457
P Wedrich, Exponential growth of colored HOMFLY-PT homology, Adv. Math. 353 (2019) 471–525 MR Zbl
H Wu, A colored sl(N) homology for links in S3, Dissertationes Math. 499 (2014) 1–217 MR Zbl