Article (Scientific journals)
Difference in the interaction of nano-diameter rod and tubular particles with a disclination line in a nematic liquid crystal
Murali, Meenu; Agha, Hakam; Mrzel, Aleš et al.
2020In RSC Advances, 10 (36), p. 21473-21480
Peer Reviewed verified by ORBi
 

Files


Full Text
RSC_adv.pdf
Publisher postprint (1.09 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
liquid crystal; carbon nanotubes; nanoparticles; disclinations
Abstract :
[en] In the presence of a disclination line, inclusions within an aligned nematic liquid crystal (LC) are first attracted and ultimately trapped in it. The kind of orientational distortion created by the inclusions is fundamental in determining the trapping. In the present work, we observe differences in the trapping behaviour, onto a ½ defect line in a nematic LC, of two types of particles both elongated but different in their actual geometry. Even if both types have cylindrical shape, aggregates of Mo6S2I8 nanowires (rod-like shape) and multiwall carbon nanotubes (tubular shape, i.e. hollow) trap differently although still due to deformations induced in the LC director field. Attractive forces are stronger on elongated bundles of nanowires than on similarly sized bundles of multi-wall carbon nanotubes. The reason is the difference in the attraction forces originating from different types of distortions of the LCs. The hollow and the full cylinders are not homotopically equivalent and this inequivalence holds also for the liquid crystal around them. The nanowires induce defects in the LC close-by their surfaces as shown for microrods, topologically equivalent to spheres. In contrast, multi-wall carbon nanotubes, being hollow, do not form defects close to their ends. However, the tubes are strongly bent and the strong planar anchoring of LC at the surface induces deformation in the LC enabling attraction forces with the defect line. HiPco single wall carbon nanotubes could not be trapped because their bundles looked much straighter and smaller than the ones of MWCNTs and thus neither defects nor standard strong deformations are expected. In conclusion, even if the shape of both types of particles is cylindrical, the topological difference between rods and tubes has profound consequences on the physical behaviour and on the presence and type of defect-mediated nematic attraction forces.
Disciplines :
Physics
Author, co-author :
Murali, Meenu ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Agha, Hakam ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Mrzel, Aleš;  Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia > Department of Complex Matter
Scalia, Giusy ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Difference in the interaction of nano-diameter rod and tubular particles with a disclination line in a nematic liquid crystal
Publication date :
05 May 2020
Journal title :
RSC Advances
ISSN :
2046-2069
Publisher :
Royal Society of Chemistry, Cambridge, United Kingdom
Volume :
10
Issue :
36
Pages :
21473-21480
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Physics and Materials Science
FnR Project :
FNR10935404 - Materials For Sensing And Energy Harvesting, 2015 (01/10/2016-31/03/2023) - Emmanuel Defay
Funders :
FNR - Fonds National de la Recherche [LU]
Available on ORBilu :
since 20 February 2021

Statistics


Number of views
137 (10 by Unilu)
Number of downloads
64 (5 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
WoS citations
 
2

Bibliography


Similar publications



Contact ORBilu