Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Using Domain-specific Corpora for Improved Handling of Ambiguity in Requirements
EZZINI, Saad; ABUALHAIJA, Sallam; Arora, Chetan et al.
2021In Proceedings of the 43rd International Conference on Software Engineering (ICSE'21), Madrid 25-28 May 2021
Peer reviewed
 

Documents


Texte intégral
ICSE21-EAASB.pdf
Postprint Auteur (617.01 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Requirements Engineering; Natural-language Requirements; Ambiguity; Natural Language Processing; Corpus Generation; Wikipedia
Résumé :
[en] Ambiguity in natural-language requirements is a pervasive issue that has been studied by the requirements engineering community for more than two decades. A fully manual approach for addressing ambiguity in requirements is tedious and time-consuming, and may further overlook unacknowledged ambiguity – the situation where different stakeholders perceive a requirement as unambiguous but, in reality, interpret the requirement differently. In this paper, we propose an automated approach that uses natural language processing for handling ambiguity in requirements. Our approach is based on the automatic generation of a domain-specific corpus from Wikipedia. Integrating domain knowledge, as we show in our evaluation, leads to a significant positive improvement in the accuracy of ambiguity detection and interpretation. We scope our work to coordination ambiguity (CA) and prepositional-phrase attachment ambiguity (PAA) because of the prevalence of these types of ambiguity in natural-language requirements [1]. We evaluate our approach on 20 industrial requirements documents. These documents collectively contain more than 5000 requirements from seven distinct application domains. Over this dataset, our approach detects CA and PAA with an average precision of 80% and an average recall of 89% (90% for cases of unacknowledged ambiguity). The automatic interpretations that our approach yields have an average accuracy of 85%. Compared to baselines that use generic corpora, our approach, which uses domain-specific corpora, has 33% better accuracy in ambiguity detection and 16% better accuracy in interpretation.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
EZZINI, Saad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
ABUALHAIJA, Sallam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Arora, Chetan;  Deakin University
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Using Domain-specific Corpora for Improved Handling of Ambiguity in Requirements
Date de publication/diffusion :
mai 2021
Nom de la manifestation :
43rd International Conference on Software Engineering
Date de la manifestation :
from 25-05-2021 to 28-05-2021
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 43rd International Conference on Software Engineering (ICSE'21), Madrid 25-28 May 2021
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Projet FnR :
FNR12632261 - Early Quality Assurance Of Critical Systems, 2018 (01/01/2019-31/12/2021) - Mehrdad Sabetzadeh
Organisme subsidiant :
FNR - Luxembourg National Research Fund
Disponible sur ORBilu :
depuis le 12 février 2021

Statistiques


Nombre de vues
528 (dont 57 Unilu)
Nombre de téléchargements
940 (dont 48 Unilu)

citations Scopus®
 
60
citations Scopus®
sans auto-citations
50
OpenCitations
 
14
citations OpenAlex
 
47
citations WoS
 
40

Bibliographie


Publications similaires



Contacter ORBilu