Article (Périodiques scientifiques)
Learning-Assisted Eavesdropping and Symbol-Level Precoding Countermeasures for Downlink MU-MISO Systems
MAYOUCHE, Abderrahmane; SPANO, Danilo; TSINOS, Christos et al.
2020In IEEE Open Journal of the Communications Society, 1, p. 535 - 549
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
09079474_Eve.pdf
Postprint Éditeur (1.95 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
constructive interference; symbol-level precoding; physical-layer security; machine learning
Résumé :
[en] In this work, we introduce a machine-learning (ML) based detection attack, where an eavesdropper (Eve) is able to learn the symbol detection function based on precoded pilots. With this ability, an Eve can correctly detect symbols with a high probability. To counteract this attack, we propose a novel symbol-level precoding (SLP) scheme that enhances physical-layer security (PLS) while guaranteeing a constructive interference effect at the intended users. Contrary to conventional SLP schemes, the proposed scheme is robust to the ML-based attack. In particular, the proposed scheme enhances security by designing Eve's received signal to lie at the boundaries of the detection regions. This distinct design causes Eve's detection decisions to be based almost purely on noise. The proposed countermeasure is then extended to account for multi-antennas at the Eve and also for multi-level modulation schemes. In the numerical results, we validate both the detection attack and the countermeasures and show that this gain in security can be achieved at the expense of only a small additional power consumption at the transmitter, and more importantly, these benefits are obtained without affecting the performance at the intended user.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAYOUCHE, Abderrahmane ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
SPANO, Danilo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
TSINOS, Christos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Learning-Assisted Eavesdropping and Symbol-Level Precoding Countermeasures for Downlink MU-MISO Systems
Date de publication/diffusion :
27 avril 2020
Titre du périodique :
IEEE Open Journal of the Communications Society
eISSN :
2644-125X
Volume/Tome :
1
Pagination :
535 - 549
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Projet FnR :
FNR11607830 - Exploiting Interference For Physical Layer Security In 5g Networks, 2017 (01/02/2018-31/07/2021) - Bjorn Ottersten
Intitulé du projet de recherche :
AGNOSTIC
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 08 février 2021

Statistiques


Nombre de vues
183 (dont 12 Unilu)
Nombre de téléchargements
124 (dont 9 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
8
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu