Article (Périodiques scientifiques)
Inputs from Hell: Learning Input Distributions for Grammar-Based Test Generation
SOREMEKUN, Ezekiel; Pavese, Esteban; Havrikov, Nikolas et al.
2022In IEEE Transactions on Software Engineering, 48 (4), p. 1138 - 1153
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
inputs-from-hell.pdf
Preprint Auteur (599.31 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
test case generation; probabilistic grammars; input samples
Résumé :
[en] Grammars can serve as producers for structured test inputs that are syntactically correct by construction. A probabilistic grammar assigns probabilities to individual productions, thus controlling the distribution of input elements. Using the grammars as input parsers, we show how to learn input distributions from input samples, allowing to create inputs that are similar to the sample; by inverting the probabilities, we can create inputs that are dissimilar to the sample. This allows for three test generation strategies: 1) “Common inputs” – by learning from common inputs, we can create inputs that are similar to the sample; this is useful for regression testing. 2) “Uncommon inputs” – learning from common inputs and inverting probabilities yields inputs that are strongly dissimilar to the sample; this is useful for completing a test suite with “inputs from hell” that test uncommon features, yet are syntactically valid. 3) “Failure-inducing inputs” – learning from inputs that caused failures in the past gives us inputs that share similar features and thus also have a high chance of triggering bugs; this is useful for testing the completeness of fixes. Our evaluation on three common input formats (JSON, JavaScript, CSS) shows the effectiveness of these approaches. Results show that “common inputs” reproduced 96% of the methods induced by the samples. In contrast, for almost all subjects (95%), the “uncommon inputs” covered significantly different methods from the samples. Learning from failure-inducing samples reproduced all exceptions (100%) triggered by the failure-inducing samples and discovered new exceptions not found in any of the samples learned from.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SOREMEKUN, Ezekiel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Pavese, Esteban;  Humboldt-Universit¨at zu Berlin, Berlin, Germany. > Department of Computer Science
Havrikov, Nikolas;  CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.
Grunske, Lars;  Humboldt-Universit¨at zu Berlin, Berlin, Germany. > Department of Computer Science
Zeller, Andreas;  CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Inputs from Hell: Learning Input Distributions for Grammar-Based Test Generation
Date de publication/diffusion :
01 avril 2022
Titre du périodique :
IEEE Transactions on Software Engineering
ISSN :
0098-5589
eISSN :
1939-3520
Maison d'édition :
Institute of Electrical and Electronics Engineers, New-York, Etats-Unis - New York
Volume/Tome :
48
Fascicule/Saison :
4
Pagination :
1138 - 1153
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 05 février 2021

Statistiques


Nombre de vues
258 (dont 21 Unilu)
Nombre de téléchargements
256 (dont 7 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
11
citations OpenAlex
 
19
citations WoS
 
16

Bibliographie


Publications similaires



Contacter ORBilu