[en] Fractional Brownian motion ; Local times ; Macroscopic Hausdorff dimension
[en] Let B={Bt:t≥0} be a real-valued fractional Brownian motion of index H∈(0,1). We prove that the macroscopic Hausdorff dimension of the level sets Lx={t∈R+:Bt=x} is, with probability one, equal to 1−H for all x∈R.