Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Low-light image enhancement of permanently shadowed lunar regions with physics-based machine learning
Moseley, Ben; Bickel, Valentin; Lopez-Francos, Ignacio et al.
2020In Low-light image enhancement of permanently shadowed lunar regions with physics-based machine learning
Peer reviewed
 

Documents


Texte intégral
m4g2_neurips.pdf
Preprint Auteur (4.18 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Machine learning; Remote sensing; Lunar exploration
Résumé :
[en] Finding water(-ice) on the Moon is key to enabling a sustainable human presence on the Moon and beyond. There is evidence that water-ice is abundant in and around the Moon’s Permanently Shadowed Regions (PSRs), however, direct visual detection has not yet been possible. Surface ice or related physical features could potentially be directly detected from high-resolution optical imagery, but, due to the extremely low-light conditions in these areas, high levels of sensor and photon noise make this very challenging. In this work we generate high-resolution, low-noise optical images over lunar PSRs by using two physics-based deep neural networks to model and remove CCD-related and photon noise in existing low-light optical imagery, potentially paving the way for a direct water-ice detection method.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Moseley, Ben;  University of Oxford
Bickel, Valentin;  MPS Goettingen & ETH Zurich
Lopez-Francos, Ignacio;  NASA Ames Research Center
RANA, Loveneesh  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Remote Sensing
OLIVARES MENDEZ, Miguel Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Wingo, Dennis;  Skycorp Inc.
Zuniga, Allison;  NASA Ames Research Center
Subtil, Nuno;  Nvidia
D’Eon, Eugene;  Nvidia
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Low-light image enhancement of permanently shadowed lunar regions with physics-based machine learning
Date de publication/diffusion :
décembre 2020
Nom de la manifestation :
Conference on Neural Information Processing Systems, NeurIPS
Date de la manifestation :
from 6-12-2020 to 12-12-2020
Titre de l'ouvrage principal :
Low-light image enhancement of permanently shadowed lunar regions with physics-based machine learning
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 15 janvier 2021

Statistiques


Nombre de vues
857 (dont 64 Unilu)
Nombre de téléchargements
679 (dont 28 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu