Pas de texte intégral
Article (Périodiques scientifiques)
A scalable method to construct compact road networks from GPS trajectories
GUO, Yuejun; Bardera, Anton; FOrt, Marta et al.
2020In International Journal of Geographical Information Science, 0 (0), p. 1-37
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
GPS trajectory; road network construction; split-and-merge strategy; Slide method
Résumé :
[en] The automatic generation of road networks from GPS tracks is a challenging problem that has been receiving considerable attention in the last years. Although dozens of methods have been proposed, current techniques suffer from two main shortcomings: the quality of the produced road networks is still far from those produced manually, and the methods are slow, making them not scalable to large inputs. In this paper, we present a fast four-step density-based approach to construct a road network from a set of trajectories. A key aspect of our method is the use of an improved version of the Slide method to adjust trajectories to build a more compact density surface. The network has comparable or better quality than that of state-of-the-art methods and is simpler (includes fewer nodes and edges). Furthermore, we also propose a split-and-merge strategy that allows splitting the data domain into smaller regions that can be processed independently, making the method scalable to large inputs. The performance of our method is evaluated with extensive experiments on urban and hiking data.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GUO, Yuejun ;  Universitat de Girona > Graphics and Imaging Lab
Bardera, Anton;  Universitat de Girona > Graphics and Imaging Lab
FOrt, Marta;  Universitat de Girona > Graphics and Imaging Lab
Silveira, Rodrigo;  Universitat Politècnica de Catalunya > Department de Matemàtiques
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A scalable method to construct compact road networks from GPS trajectories
Date de publication/diffusion :
16 octobre 2020
Titre du périodique :
International Journal of Geographical Information Science
ISSN :
1365-8816
eISSN :
1365-8824
Maison d'édition :
Taylor & Francis, Royaume-Uni
Volume/Tome :
0
Fascicule/Saison :
0
Pagination :
1-37
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Spanish Government under Grants PID2019- 106426RB-C31 and PID2019-104129GB-I00/AEI/10.13039/501100011033
Catalan Government under grants 2017-SGR-1101 and 2017-SGR-1640
Universitat de Girona under grant PONTUdG2019/11
Chinese Academy of Sciences President’s International Fellowship Initiative under grant 2021VTB0004
Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya
FSE - Fonds Social Européen
Disponible sur ORBilu :
depuis le 15 janvier 2021

Statistiques


Nombre de vues
157 (dont 24 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
9
OpenCitations
 
1
citations OpenAlex
 
8
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu