Abstract :
[en] As the use of radars in autonomous driving systems becomes more prevalent, these systems are increasingly susceptible to mutual interference. In this paper, we employ stochastic geometry to model the automotive radar interference in realistic traffic scenarios and then derive trade-offs between the radar design parameters and detection probability. Prior works model the locations of radars in the lane as a homogeneous Poisson point process (PPP). However, the PPP models assume all nodes to be independent, do not account for the lengths of vehicles, and ignore spatial mutual exclusion. In order to provide a more realistic interference effect, we adopt the Matérn hardcore process (MHCP) instead of PPP, in which two vehicles are not closer than an exclusion radius from one another. We show that the MHCP model leads to more practical design trade-offs for adapting the radar parameters than the conventional PPP model.
Scopus citations®
without self-citations
10