Article (Périodiques scientifiques)
Retrospective non-target analysis to support regulatory water monitoring: from masses of interest to recommendations via in silico workflows
LAI, Adelene; SINGH, Randolph; Kovalova, Lubomira et al.
2021In Environmental Sciences Europe, 33 (1), p. 43
Peer reviewed
 

Documents


Texte intégral
Lai_etal_2021_AWEL_s12302-021-00475-1.pdf
Postprint Éditeur (2.25 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
non-target analysis; suspect screening; wastewater; micropollutants; cheminformatics; identification; monitoring; retrospective
Résumé :
Abstract Background Applying non-target analysis (NTA) in regulatory environmental monitoring remains challenging—instead of having exploratory questions, regulators usually already have specific questions related to environmental protection aims. Additionally, data analysis can seem overwhelming because of the large data volumes and many steps required. This work aimed to establish an open in silico workflow to identify environmental chemical unknowns via retrospective NTA within the scope of a pre-existing Swiss environmental monitoring campaign focusing on industrial chemicals. The research question addressed immediate regulatory priorities: identify pollutants with industrial point sources occurring at the highest intensities over two time points. Samples from 22 wastewater treatment plants obtained in 2018 and measured using liquid chromatography–high resolution mass spectrometry were retrospectively analysed by (i) performing peak-picking to identify masses of interest; (ii) prescreening and quality-controlling spectra, and (iii) tentatively identifying priority “known unknown” pollutants by leveraging environmentally relevant chemical information provided by Swiss, Swedish, EU-wide, and American regulators. This regulator-supplied information was incorporated into MetFrag, an in silico identification tool replete with “post-relaunch” features used here. This study’s unique regulatory context posed challenges in data quality and volume that were directly addressed with the prescreening, quality control, and identification workflow developed. Results One confirmed and 21 tentative identifications were achieved, suggesting the presence of compounds as diverse as manufacturing reagents, adhesives, pesticides, and pharmaceuticals in the samples. More importantly, an in-depth interpretation of the results in the context of environmental regulation and actionable next steps are discussed. The prescreening and quality control workflow is openly accessible within the R package Shinyscreen, and adaptable to any (retrospective) analysis requiring automated quality control of mass spectra and non-target identification, with potential applications in environmental and metabolomics analyses. Conclusions NTA in regulatory monitoring is critical for environmental protection, but bottlenecks in data analysis and results interpretation remain. The prescreening and quality control workflow, and interpretation work performed here are crucial steps towards scaling up NTA for environmental monitoring.
Disciplines :
Sciences de l’environnement & écologie
Chimie
Auteur, co-auteur :
LAI, Adelene ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
SINGH, Randolph ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
Kovalova, Lubomira
Jaeggi, Oliver
KONDIC, Todor ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
SCHYMANSKI, Emma  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Retrospective non-target analysis to support regulatory water monitoring: from masses of interest to recommendations via in silico workflows
Date de publication/diffusion :
2021
Titre du périodique :
Environmental Sciences Europe
ISSN :
2190-4707
Maison d'édition :
Research Square
Volume/Tome :
33
Fascicule/Saison :
1
Pagination :
43
Peer reviewed :
Peer reviewed
Focus Area :
Sustainable Development
Computational Sciences
Projet FnR :
FNR12341006 - Environmental Cheminformatics To Identify Unknown Chemicals And Their Effects, 2018 (01/10/2018-30/09/2023) - Emma Schymanski
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 13 octobre 2021

Statistiques


Nombre de vues
420 (dont 30 Unilu)
Nombre de téléchargements
79 (dont 3 Unilu)

citations Scopus®
 
31
citations Scopus®
sans auto-citations
25
OpenCitations
 
11
citations OpenAlex
 
40
citations WoS
 
27

Bibliographie


Publications similaires



Contacter ORBilu