Article (Périodiques scientifiques)
Difficulty-level modeling of ontology-based factual questions
ELLAMPALLIL VENUGOPAL, Vinu; Kumar, P Sreenivasa
2020In Semantic Web
Peer reviewed
 

Documents


Texte intégral
swj1898.pdf
Preprint Auteur (282.54 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Semantics-based knowledge representations such as ontologies are found to be very useful in automatically generating meaningful factual questions. Determining the difficulty-level of these system-generated questions is helpful to effectively utilize them in various educational and professional applications. The existing approach for for predicting the difficulty-level of factual questions utilizes only few naive features and, its accuracy (F-measure) is found to be close to only 50% while considering our benchmark set of 185 questions. In this paper, we propose a new methodology for this problem by identifying new features and by incorporating an educational theory, related to difficulty-level of a question, called Item Response Theory (IRT). In the IRT, knowledge proficiency of end users (learners) are considered for assigning difficulty-levels, because of the assumptions that a given question is perceived differently by learners of various proficiency levels. We have done a detailed study on the features/factors of a question statement which could possibly determine its difficulty-level for three learner categories (experts, intermediates, and beginners). We formulate ontology-based metrics for the same. We then train three logistic regression models to predict the difficulty-level corresponding to the three learner categories. The output of these models is interpreted using the IRT to find a question’s overall difficulty-level. The accuracy of the three models based on cross-validation is found to be in satisfactory range (67-84%). The proposed model (containing three classifiers) outperforms the existing model by more than 20% in precision, recall and F1-score measures.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ELLAMPALLIL VENUGOPAL, Vinu ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Kumar, P Sreenivasa
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Difficulty-level modeling of ontology-based factual questions
Date de publication/diffusion :
12 mars 2020
Titre du périodique :
Semantic Web
Maison d'édition :
IOS Press
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 05 janvier 2021

Statistiques


Nombre de vues
261 (dont 4 Unilu)
Nombre de téléchargements
286 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu