Pas de texte intégral
Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
On the Weyl problem for complete surfaces in the hyperbolic and anti-de Sitter spaces
SCHLENKER, Jean-Marc
2021
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Résumé :
[en] The classical Weyl problem (solved by Lewy, Alexandrov, Pogorelov, and others) asks whether any metric of curvature K≥0 on the sphere is induced on the boundary of a unique convex body in $\R^3$. The answer was extended to surfaces in hyperbolic space by Alexandrov in the 1950s, and a ``dual'' statement, describing convex bodies in terms of the third fundamental form of their boundary (e.g. their dihedral angles, for an ideal polyhedron) was later proved. We describe three conjectural generalizations of the Weyl problem in $\HH^3$ and its dual to unbounded convex subsets and convex surfaces, in ways that are relevant to contemporary geometry since a number of recent results and well-known open problems can be considered as special cases. One focus is on convex domain having a ``thin'' asymptotic boundary, for instance a quasicircle -- this part of the problem is strongly related to the theory of Kleinian groups. A second direction is towards convex subsets with a ``thick'' ideal boundary, for instance a disjoint union of disks -- here one find connections to problems in complex analysis, such as the Koebe circle domain conjecture. A third direction is towards complete, convex disks of infinite area in $\HH^3$ and surfaces in hyperbolic ends -- with connections to questions on circle packings or grafting on the hyperbolic disk. Similar statements are proposed in anti-de Sitter geometry, a Lorentzian cousin of hyperbolic geometry where interesting new phenomena can occur, and in Minkowski and Half-pipe geometry. We also collect some partial new results mostly based on recent works.
Disciplines :
Mathématiques
Auteur, co-auteur :
SCHLENKER, Jean-Marc ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Langue du document :
Anglais
Titre :
On the Weyl problem for complete surfaces in the hyperbolic and anti-de Sitter spaces
Date de publication/diffusion :
01 janvier 2021
Nombre de pages :
27
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 01 janvier 2021

Statistiques


Nombre de vues
166 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu