[en] To investigate face individuation (FI), a critical brain function in the human species, an oddball fast periodic visual stimulation (FPVS) approach was recently introduced (Liu‐Shuang et al., Neuropsychologia, 2014, 52, 57). In this paradigm, an image of an unfamiliar “base” facial identity is repeated at a rapid rate F (e.g., 6 Hz) and different unfamiliar “oddball” facial identities are inserted every nth item, at a F/n rate (e.g., every 5th item, 1.2 Hz). This stimulation elicits FI responses at F/n and its harmonics (2F/n, 3F/n, etc.), reflecting neural discrimination between oddball versus base facial identities, which is quantified in the frequency domain of the electroencephalogram (EEG). This paradigm, used in 20 published studies, demonstrates substantial advantages for measuring FI in terms of validity, objectivity, reliability, and sensitivity. Human intracerebral recordings suggest that this FI response originates from neural populations in the lateral inferior occipital and fusiform gyri, with a right hemispheric dominance consistent with the localization of brain lesions specifically affecting facial identity recognition (prosopagnosia). Here, we summarize the contributions of the oddball FPVS framework toward understanding FI, including its (a)typical development, with early studies supporting the application of this technique to clinical testing (e.g., autism spectrum disorder). This review also includes an in‐depth analysis of the paradigm's methodology, with guidelines for designing future studies. A large‐scale group analysis compiling data across 130 observers provides insights into the oddball FPVS FI response properties. Overall, we recommend the oddball FPVS paradigm as an alternative approach to behavioral or traditional event‐related potential EEG measures of face individuation.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
Rossion, Bruno
RETTER, Talia ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Liu-Shuang, Joan
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography
Abudarham, N., & Yovel, G. (2020). Face recognition depends on specialized mechanisms tuned to view-invariant facial features: Insights from deep neural networks optimized for face or object recognition. bioRxiv. https://doi.org/10.1101/2020.01.01.890277v1
Adibpour, P., Dubois, J., & Dehaene-Lambertz, G. (2018). Right but not left hemispheric discrimination of faces in infancy. Nature Human Behaviour, 2, 67–79. https://doi.org/10.1038/s41562-017-0249-4
Adrian, E. D. (1944). Brain rhythms. Nature, 153, 360–362. https://doi.org/10.1038/153360a0
Adrian, E. D., & Matthews, B. H. C. (1934). The interpretation of potential waves in the cortex. The Journal of Physiology, 81, 440–471. https://doi.org/10.1113/jphysiol.1934.sp003147
Ales, J., Farzin, F., Rossion, B., & Norcia, A. M. (2012). An objective method for measuring face detection thresholds using the sweep steady-state evoked response. Journal of Vision, 12(18), 1–18.
Alonso-Prieto, E. A., Van Belle, G., Liu, J., Norcia, A. M., & Rossion, B. (2013). The 6 Hz fundamental stimulation frequency rate for individual face discrimination in the right occipito–temporal cortex. Neuropsychologia, 51, 2863–2975. https://doi.org/10.1016/j.neuropsychologia.2013.08.018
Ambrus, G. G., Windel, F., Burton, A. M., & Kovács, G. (2017). Causal evidence of the involvement of the right occipital face area in face-identity acquisition. NeuroImage, 148, 212–218. https://doi.org/10.1016/j.neuroimage.2017.01.043
American Psychiatric Association (2014). Diagnostic and Statistical Manual of Mental Disorders (Dutch version), (5th ed.), Uitgeverij Boom: Amsterdam.
Amihai, I., Deouell, L. Y., & Bentin, S. (2011). Neural adaptation is related to face repetition irrespective of identity: A reappraisal of the N170 effect. Experimental Brain Research, 209, 193–204. https://doi.org/10.1007/s00221-011-2546-x
Anzellotti, S., Fairhall, S. L., & Caramazza, A. (2014). Decoding representations of face identity that are tolerant to rotation. Cerebral Cortex, 24, 1988–1995. https://doi.org/10.1093/cercor/bht046
Appelbaum, L. G., Wade, A. R., Vildavski, V. Y., Pettet, M. W., & Norcia, A. M. (2006). Cue-invariant networks for figure and background processing in human visual cortex. Journal of Neuroscience, 26, 11695–11708.
Axelrod, V., & Yovel, G. (2013). The challenge of localizing the anterior temporal face area: A possible solution. NeuroImage, 8, 371–380. https://doi.org/10.1016/j.neuroimage.2013.05.015
Bach, M., & Meigen, T. (1999). Do's and don'ts in Fourier analysis of steady-state potentials. Documenta Ophthalmologica, 99, 69–82.
Barrett, S. E., Rugg, M. D., & Perrett, D. I. (1988). Event-related potentials and the matching of familiar and unfamiliar faces. Neuropsychologia, 26, 105–117. https://doi.org/10.1016/0028-3932(88)90034-6
Barry-Anwar, R., Hadley, H., Conte, S., Keil, A., & Scott, L. S. (2018). The developmental time course and topographic distribution of individual-level monkey face discrimination in the infant brain. Neuropsychologia, 108, 25–31. https://doi.org/10.1016/j.neuropsychologia.2017.11.019
Barton, J. J. (2008). Structure and function in acquired prosopagnosia: Lessons from a series of 10 patients with brain damage. Journal of Neuropsychology, 2, 197–225. https://doi.org/10.1348/174866407X214172
Barton, J. J., & Corrow, S. L. (2016). Selectivity in acquired prosopagnosia: The segregation of divergent and convergent operations. Neuropsychologia, 83, 76–87. https://doi.org/10.1016/j.neuropsychologia.2015.09.015
Bate, S., & Tree, J. J. (2017). The definition and diagnosis of developmental prosopagnosia. Quarterly Journal of Experimental Psychology, 70, 193–200. https://doi.org/10.1080/17470218.2016.1195414
Behrmann, M., & Avidan, G. (2005). Congenital prosopagnosia: Face-blind from birth. Trends in Cognitive Sciences, 9, 180–187. https://doi.org/10.1016/j.tics.2005.02.011
Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., & Minshew, N. (2006). Configural processing in autism and its relationship to face processing. Neuropsychologia, 44(1), 110–129. https://doi.org/10.1016/j.neuropsychologia.2005.04.002
Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17, 210–219. https://doi.org/10.1016/j.tics.2013.03.007
Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10.6, 258–264. https://doi.org/10.1016/j.tics.2006.05.001
Bekhtereva, V., & Müller, M. M. (2015). Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz. Social Cognitive and Affective Neuroscience, 10, 1623–1633. https://doi.org/10.1093/scan/nsv058
Bekhtereva, V., Pritschmann, R., Keil, A., & Müller, M. M. (2018). The neural signature of extracting emotional content from rapid visual streams at multiple presentation rates: A cross-laboratory study. Psychophysiology, 55(12), e13222.
Bentin, S., McCarthy, G., Perez, E., Puce, A., & Allison, T. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565. https://doi.org/10.1162/jocn.1996.8.6.551
Benton, A. (1990). Facial recognition 1990. Cortex, 26, 491–499. https://doi.org/10.1016/S0010-9452(13)80299-7
Benton, A. L., & Van Allen, M. W. (1968). Impairment in facial recognition in patients with cerebral disease. Transactions of the American Neurological Association, 93, 38–42. https://doi.org/10.1016/S0010-9452(68)80018-8
Benton, A. L., & Van Allen, M. W. (1972). Prosopagnosia and facial discrimination. Journal of Neurological Sciences, 15, 167–172. https://doi.org/10.1016/0022-510X(72)90004-4
Berger, H. (1929). Uber das elektroenkephalogramm des menschen. Archiv Für Psychiatrie Und Nervenkrankheiten, 87, 527–570.
Bindemann, M., Avetisyan, M., & Rakow, T. (2012). Who can recognize unfamiliar faces? Individual differences and observer consistency in person identification. Journal of Experimental Psychology: Applied, 18, 277–291. https://doi.org/10.1037/a0029635
Bindemann, M., Fysh, M., Cross, K., & Watts, R. (2016). Matching faces against the clock. i-Perception, 7(5), 2041669516672219. https://doi.org/10.1177/2041669516672219
Blais, C., Jack, R. E., Scheepers, C., Fiset, D., & Caldara, R. (2008). Culture shapes how we look at faces. PLoS One, 3(8), e3022.
Bodamer, J. (1947). Die prosop-agnosie. Archives Psychiatrie Nervenkrankh, 179, 6–54. https://doi.org/10.1007/BF00352849
Bottari, D., Dormal, G., Bednaya, E., Villwock, A., Dzhelyova, M., Grin, K., … Röder, B. (submitted). EEG frequency-tagging demonstrates differential neural face processing in congenitally deaf signers.
Bouvier, S. E., & Engel, S. A. (2006). Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cerebral Cortex, 16, 183–191. https://doi.org/10.1093/cercor/bhi096
Bowles, D. C., McKone, E., Dawel, A., Duchaine, B., Palermo, R., Schmalzl, L., … Yovel, G. (2009). Diagnosing prosopagnosia: Effects of ageing, sex, and participant-stimulus ethnic match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cognitive Neuropsychology, 26, 423–455. https://doi.org/10.1080/02643290903343149
Braddick, O., Birtles, D., Wattam-Bell, J., & Atkinson, J. (2005). Motion- and orientation- specific cortical responses in infancy. Vision Research, 45, 3169–3179. https://doi.org/10.1016/j.visres.2005.07.021
Braddick, O. J., Wattam-Bell, J., & Atkinson, J. (1986). Orientation-specific cortical responses develop in early infancy. Nature, 320, 617–619. https://doi.org/10.1038/320617a0
Brecht, K. F., Wagener, L., Ostojić, L., Clayton, N. S., & Nieder, A. (2017). Comparing the face inversion effect in crows and humans. Journal of Comparative Physiology A, 203, 1017–1027. https://doi.org/10.1007/s00359-017-1211-7
Bruce, V. (1982). Changing faces: Visual and non-visual coding processes in face recognition. British Journal of Psychology, 73, 105–116. https://doi.org/10.1111/j.2044-8295.1982.tb01795.x
Bruce, V., Henderson, Z., Greenwood, K., Hancock, P. J. B., Burton, A. M., & Miller, P. (1999). Verification of face identities from images captured on video. Journal of Experimental Psychology: Applied, 5, 339–360.
Bruce, V., Henderson, Z., Newman, C., & Burton, A. M. (2001). Matching identities of familiar and unfamiliar faces caught on CCTV images. Journal of Experimental Psychology: Applied, 7207–7218. https://doi.org/10.1037/1076-898X.7.3.207
Bruce, V., & Langton, S. R. H. (1994). The use of pigmentation and shading information in recognising the sex and identities of faces. Perception, 23, 803–822. https://doi.org/10.1068/p230803
Bruce, V., & Young, A. (1998). In the eye of the beholder: The science of face perception. New York, NY: Oxford University Press.
Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychologica Belgica, 51, 5–13. https://doi.org/10.5334/pb-51-1-5
Burton, A. M., White, D., & McNeill, A. (2010). The glasgow face matching test. Behavior Research Methods, 42, 286–291. https://doi.org/10.3758/BRM.42.1.286
Bushnell, I. W. R., Sai, F., & Mullin, J. T. (1989). Neonatal recognition of the mother’s face. British Journal of Developmental Psychology, 7, 3–15. https://doi.org/10.1111/j.2044-835X.1989.tb00784.x
Busigny, T., Graf, M., Mayer, E., & Rossion, B. (2010). Acquired prosopagnosia as a face-specific disorder: Ruling out the general visual similarity account. Neuropsychologia, 48, 2051–2067. https://doi.org/10.1016/j.neuropsychologia.2010.03.026
Caharel, S., d’Arripe, O., Ramon, M., Jacques, C., & Rossion, B. (2009). Early adaptation to unfamiliar faces across viewpoint changes in the right hemisphere: Evidence from the N170 ERP component. Neuropsychologia, 47, 639–643.
Campatelli, G., Federico, R. R., Apicella, F., Sicca, F., & Muratori, F. (2013). Face processing in children with ASD: Literature review. Research in Autism Spectrum Disorders, 7, 444–454. https://doi.org/10.1016/j.rasd.2012.10.003
Capilla, A., Pazo-Alvarez, P., Darriba, A., Campo, P., & Gross, J. (2011). Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses. PLoS One, 6(1), e14543. https://doi.org/10.1371/journal.pone.0014543
Carandini, M., & Heeger, D. J. (2011). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62. https://doi.org/10.1038/nrn3136
Carey, S. (1981). The development of face perception. In G. Davies, & H. D. Ellis (Eds.), Perceiving and remembering faces, (9–38). London, UK: Academic Press.
Carey, S. (1992). Becoming a face expert. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 335, 93–95.
Carey, S., & Diamond, R. (1977). From piecemeal to configurational representation of faces. Science, 195, 312–314. https://doi.org/10.1126/science.831281
Carlson, T., Tovar, D. A., Alink, A., & Kriegeskorte, N. (2013). Representational dynamics of object vision: The first 1000 ms. Journal of Vision, 13(10), 1. https://doi.org/10.1167/13.10.1
Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74(3), 195–203. https://doi.org/10.1016/j.biopsych.2012.11.022
Chung, J., Lee, J., Park, H. J., Yang, H. S. (2006) Viewpoint-invariant face recognition based on view-based representation. In: D. S. Huang, K. Li, & G. W. Irwin (Eds.), Computational intelligence. ICIC 2006. Lecture notes in computer science (Vol. 4114, (872–878). Berlin, Heidelberg, Germany: Springer.
Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17, 455–462. https://doi.org/10.1038/nn.3635
Collins, E., Robinson, A. K., & Behrmann, M. (2018). Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG. NeuroImage, 181, 120–131. https://doi.org/10.1016/j.neuroimage.2018.06.080
Collishaw, S. M., & Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29, 893–909. https://doi.org/10.1068/p2949
Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52, 804–811. https://doi.org/10.2307/1129080
Crookes, K., & McKone, E. (2009). Early maturity of face recognition: No childhood development of holistic processing, novel face encoding, or face-space. Cognition, 111(2), 219–247.
Croydon, A., Pimperton, H., Ewing, L., Duchaine, B. C., & Pellicano, E. (2014). The Cambridge Face Memory Test for Children (CFMT-C): A new tool for measuring face recognition skills in childhood. Neuropsychologia, 62, 60–67. https://doi.org/10.1016/j.neuropsychologia.2014.07.008
Damon, F., Leleu, A., Rekow, D., Poncet, F., & Baudouin, J. Y. (2020). Expertise for conspecific face individuation in the human brain. NeuroImage, 204, 116218.htps://doi.org/10.1016/j.neuroimage.2019.116218t
Davidesco, I., Zion-Golumbic, E., Bickel, S., Harel, M., Groppe, D. M., Keller, C. J., … Malach, R. (2014). Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. Cerebral Cortex, 24, 1879–1893. https://doi.org/10.1093/cercor/bht038
Davidoff, J., & Landis, T. (1990). Recognition of unfamiliar faces in prosopagnosia. Neuropsychologia, 28, 1143–1161. https://doi.org/10.1016/0028-3932(90)90051-O
Davies-Thompson, J., Gouws, A., & Andrews, T. J. (2009). An image-dependent representation of familiar and unfamiliar faces in the human ventral stream. Neuropsychologia, 47, 1627–1635. https://doi.org/10.1016/j.neuropsychologia.2009.01.017
Dawson, G. D. (1954). A summation technique for the detection of small evoked potentials. Electroencephalography and Clinical Neurophysiology, 6, 65–84. https://doi.org/10.1016/0013-4694(54)90007-3
Dawson, G., Carver, L., Meltzoff, A. N., Panagiotides, H., McPartland, J., & Webb, S. J. (2002). Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Development, 73, 700–717. https://doi.org/10.1111/1467-8624.00433
Dawson, G., Webb, S. J., & McPartland, J. (2005). Understanding the nature of face processing impairment in Autism: Insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27, 403–424. https://doi.org/10.1207/s15326942dn2703_6
de Haan, M., Pascalis, O., & Johnson, M. H. (2002). Specialization of neural mechanisms underlying face recognition in human infants. Journal of Cognitive Neuroscience, 14, 199–209. https://doi.org/10.1162/089892902317236849
de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. Elife, 4, 1–14. https://doi.org/10.7554/eLife.06564
de Heering, A., Rossion, B., & Maurer, D. (2012). Developmental changes in face recognition during childhood: Evidence from upright and inverted faces. Cognitive Development, 27, 17–27. https://doi.org/10.1016/j.cogdev.2011.07.001
De Renzi, E., & Spinnler, H. (1966). Facial recognition in brain-damaged patients. An experimental approach. Neurology, 16, 145–152.
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature, 16(4), 234–244.
Delvenne, J. F., Seron, X., Coyette, F., & Rossion, B. (2004). Evidence for perceptual deficits in associative visual (prosop)agnosia: A single-case study. Neuropsychologia, 42(5), 597–612. https://doi.org/10.1016/j.neuropsychologia.2003.10.008
Dennett, H. W., McKone, E., Tavashmi, R., Hall, A., Pidcock, M., Edwards, M., & Duchaine, B. (2012). The cambridge car memory test: A task matched in format to the cambridge face memory test, with norms, reliability, sex differences, dissociations from face memory, and expertise effects. Behavior Research Methods, 44(2), 587–605.
Di Carlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences, 11(8), 333–341.
Dixon, M.J., Bub, D.N., & Arguin, M. (1998). Semantic and visual determinants of face recognition in a prosopagnosic patient. J Cogn Neurosci, 10, 362–376.
Dobs, K., Isik, L., Pantazis, D., & Kanwisher, N. (2019). How face perception unfolds over time. Nat Commun, 10(1), 1258
Duchaine, B. C., Germine, L., & Nakayama, K. (2007). Family resemblance: Ten family members with prosopagnosia and within-class object agnosia. Cognitive Neuropsychology, 24, 419–430. https://doi.org/10.1080/02643290701380491
Duchaine, B. C., & Nakayama, K. (2006). The Cambridge face memory test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia, 44, 576–585. https://doi.org/10.1016/j.neuropsychologia.2005.07.001
Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision Science, 1, 393–416. https://doi.org/10.1146/annurev-vision-082114-035518
Dwyer, P., Xu, B., & Tanaka, J. W. (2018). Investigating the perception of face identity in adults on the autism spectrum using behavioural and electrophysiological measures. Vision Research, 157, 132–141. https://doi.org/10.1016/j.visres.2018.02.013
Dyer, A. G., Neumeyer, C., & Chittka, L. (2005). Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. The Journal of Experimental Biology, 208(Pt 24), 4709–4714. https://doi.org/10.1242/jeb.01929
Dzhelyova, M., Jacques, C., Dormal, G., Michel, C., Schiltz, C., & Rossion, B. (2019). High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Visual Cognition, 27, 127–141.
Dzhelyova, M., Jacques, C., & Rossion, B. (2017). At a single glance: Fast periodic visual stimulation uncovers the spatio-temporal dynamics of brief facial expression changes in the human brain. Cerebral Cortex, 8, 4106–4123.
Dzhelyova, M., & Rossion, B. (2014a). Supra-additive contribution of shape and surface information to individual face discrimination as revealed by fast periodic visual stimulation. Journal of Vision, 14(14), 15, 1–14. https://doi.org/10.1167/14.14.15
Dzhelyova, M., & Rossion, B. (2014b). The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation. BMC Neuroscience, 15(1), 87.
Dzhelyova, M., Schiltz, C., & Rossion, B. (2020). The relationship between the benton face recognition test and electrophysiological unfamiliar face individuation response as revealed by fast periodic visual stimulation. I-Perception, 49, 210–221.
Edelman, G. M. (1993). Neural darwinism: Selection and reentrant signaling in higher brain function. Neuron, 10, 115–125. https://doi.org/10.1016/0896-6273(93)90304-A
Eimer, M., Kiss, M., & Nicholas, S. (2010). Response profile of the face-sensitive N170 component: A rapid adaptation study. Cerebral Cortex, 20, 2442–2452. https://doi.org/10.1093/cercor/bhp312
Ellis, H. D. (1975). Recognising faces. British Journal of Psychology, 66, 409–426.
Emery, N. J., Lorincz, E. N., Perrett, D. I., Oram, M. W., & Baker, C. I. (1997). Gaze following and joint attention in rhesus monkeys (Macaca mulatta). Journal of Comparative Psychology, 111, 286–293. https://doi.org/10.1037/0735-7036.111.3.286
Engell, A. D., & McCarthy, G. (2010). The relationship of gamma oscillations and face-specific ERPs recorded subdurally from occipitotemporal cortex. Cerebral Cortex, 21(5), 1213–1221. https://doi.org/10.1093/cercor/bhq206
Engell, AD, & McCarthy, G. (2014). Repetition suppression of face-selective evoked and induced EEG recorded from human cortex. Hum Brain Mapp, 35(8), 4155–4162.
Engst, F. M., Martín-Loeches, M., & Sommer, W. (2006). Memory systems for structural and semantic knowledge of faces and buildings. Brain Research, 1124, 70–80. https://doi.org/10.1016/j.brainres.2006.09.038
Esins, J., Schultz, J., Stemper, C., Kennerknecht, I., & Bülthoff, I. (2016). Face perception and test reliabilities in congenital prosopagnosia in seven tests. Iperception, 7(1), 2041669515625797. https://doi.org/10.1177/2041669515625797
Estudillo, A. J., & Bindemann, M. (2014). Generalization across view in face memory and face matching. Iperception, 7, 589–601. https://doi.org/10.1068/i0669
Ewbank, M. P., Henson, R. N., Rowe, J. B., Stoyanova, R. S., & Calder, A. J. (2013). Different neural mechanisms within occipitotemporal cortex underlie repetition suppression across same and different-size faces. Cerebral Cortex, 23(5), 1073–1084. https://doi.org/10.1093/cercor/bhs070
Farah, M. J. (1990). Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, MA: The MIT Press.
Feuerriegel, D., Keage, H., Rossion, B., & Quek, G. (2018). Immediate stimulus repetition abolishes stimulus expectation and surprise effects in fast periodic visual oddball designs. Biological Psychology, 138, 110–125. https://doi.org/10.1016/j.biopsycho.2018.09.002
Fisher, K., Towler, J., & Eimer, M. (2017). Face identity matching is selectively impaired in developmental prosopagnosia. Cortex, 89, 11–27. https://doi.org/10.1016/j.cortex.2017.01.003
Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29, 159–170. https://doi.org/10.1068/p3012
Freiwald, W. A., & Tsao, D. Y. (2010). Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science, 330(6005), 845–851.
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Fysh, M. C., & Bindemann, M. (2017). Effects of time pressure and time passage on face-matching accuracy. Royal Society Open Science, 4(6), 170249. https://doi.org/10.1098/rsos.170249
Fysh, M. C., & Bindemann, M. (2018). The Kent face matching test. British Journal of Psychology, 109(2), 219–231.
Galambos, R., Makeig, S., & Talmachoff, P. J. (1981). A 40-Hz auditory potential recorded from the human scalp. Proceedings of the National Academy of Sciences of the United States of America, 78, 2643–2647. https://doi.org/10.1073/pnas.78.4.2643
Galper, R. E. (1970). Recognition of faces in photographic negative. Psychonomic Science, 19, 207–208. https://doi.org/10.3758/BF03328777
Gao, X., Gentile, F., & Rossion, B. (2018). Fast Periodic Stimulation (FPS): A highly effective approach in fMRI brain mapping. Brain Structure and Function, 223, 2433–2454. https://doi.org/10.1007/s00429-018-1630-4
Gao, X., Vuong, Q. C., & Rossion, B. (2019). The cortical face network of the prosopagnosic patient PS with fast periodic stimulation in fMRI. Cortex, 119, 528–542. https://doi.org/10.1016/j.cortex.2018.11.008
Gaspar, C. M., Rousselet, G. A., & Pernet, C. R. (2011). Reliability of ERP and single-trial analyses. NeuroImage, 58, 620–629. https://doi.org/10.1016/j.neuroimage.2011.06.052
Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W.(2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12, 495–504. https://doi.org/10.1162/089892900562165
Gentile, F., & Rossion, B. (2014). Temporal frequency tuning of cortical face-sensitive areas for individual face perception. NeuroImage, 90, 256–265. https://doi.org/10.1016/j.neuroimage.2013.11.053
Germine, L. T., Duchaine, B., & Nakayama, K. (2011). Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition, 118, 201–210. https://doi.org/10.1016/j.cognition.2010.11.002
Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19, 847–857. https://doi.org/10.3758/s13423-012-0296-9
Geskin, J., & Behrmann, M. (2018). Congenital prosopagnosia without object agnosia? A literature review. Cognitive Neuropsychology, 35, 4–54. https://doi.org/10.1080/02643294.2017.1392295
Gignac, G. E., Shankaralingam, M., Walker, K., & Kilpatrick, P. (2016). Short-term memory for faces relates to general intelligence moderately. Intelligence, 57, 96–104. https://doi.org/10.1016/j.intell.2016.05.001
Gilaie-Dotan, S., Gelbard-Sagiv, H., & Malach, R. (2010). Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation. NeuroImage, 50, 383–395. https://doi.org/10.1016/j.neuroimage.2009.12.077
Goesaert, E., & Op de Beeck, H. P. (2013). Representations of facial identity information in the ventral visual stream investigated with multivoxel pattern analyses. Journal of Neuroscience, 33, 8549–8555. https://doi.org/10.1523/JNEUROSCI.1829-12.2013
Gohel, B., Lim, S., Kim, M. Y., Kwon, H., & Kim, K. (2018). Dynamic pattern decoding of source-reconstructed MEG or EEG data: Perspective of multivariate pattern analysis and signal leakage. Computers in Biology and Medicine, 93, 106–116. https://doi.org/10.1016/j.compbiomed.2017.12.020
Golarai, G., Ghahremani, D. G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J. L., Gabrieli, J. D. E., & Grill-Spector, K. (2007). Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neuroscience, 10(4), 512–522. https://doi.org/10.1038/nn1865
Golarai, G., Liberman, A., & Grill-Spector, K. (2017). Experience shapes the development of neural substrates of face processing in human ventral temporal cortex. Cerebral Cortex, 27, 1229–1244.
Gregory, R. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 290, 181–197.
Griffin, J. W. (2020). Quantifying the face inversion effect in nonhuman primates: A phylogenetic meta-analysis. Animal Cognition, 23, 237–249. https://doi.org/10.1007/s10071-019-01340-8
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 14–23. https://doi.org/10.1016/j.tics.2005.11.006
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24, 187–203. https://doi.org/10.1016/S0896-6273(00)80832-6
Grill-Spector, K., & Malach, R. (2001). FMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107, 293–321. https://doi.org/10.1016/S0001-6918(01)00019-1
Grill-Spector, K., Weiner, K. S., Kay, K., & Gomez, J. (2017). The functional neuroanatomy of human face perception. Annual Review of Vision Science, 3, 167–196. https://doi.org/10.1146/annurev-vision-102016-061214
Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29, 677–697. https://doi.org/10.1162/jocn_a_01068
Grotheer, M., & Kovács, G. (2015). The relationship between stimulus repetitions and fulfilled expectations. Neuropsychologia, 67, 175–182. https://doi.org/10.1016/j.neuropsychologia.2014.12.017
Gruss, L. F., Wieser, M. J., Schweinberger, S. R., & Keil, A. (2012). Face-evoked steady-state visual potentials: Effects of presentation rate and face inversion. Frontiers in Human Neuroscience, 6, 316. https://doi.org/10.3389/fnhum.2012.00316
Guntupalli, J. S., Wheeler, K. G., & Gobbini, M. I. (2017). Disentangling the representation of identity from head view along the human face processing pathway. Cerebral Cortex, 27, 46–53. https://doi.org/10.1093/cercor/bhw344
Hagen, S., & Tanaka, J. W. (2019). Examining the neural correlates of within-category discrimination in face and non-face expert recognition. Neuropsychologia, 124, 44–54. https://doi.org/10.1016/j.neuropsychologia.2019.01.005
Hagen, S., Laguesse, R., & Rossion, B. (in preparation). Extensive short-term training reduces the inversion effect in individual face discrimination: electrophysiological evidenc.
Halit, H., de Haan, M., & Johnson, M. H. (2003). Cortical specialisation for face processing: Face-sensitive event-related potential components in 3- and 12-month-old infants. NeuroImage, 19, 1180–1193. https://doi.org/10.1016/S1053-8119(03)00076-4
Hamsher, K. D., Levin, H. S., & Benton, A. L. (1979). Facial recognition in patients with focal brain lesions. Archives of Neurology, 36, 837–839. https://doi.org/10.1001/archneur.1979.00500490051008
Hancock, P. J., Bruce, V. V., & Burton, A. M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4, 330–337. https://doi.org/10.1016/S1364-6613(00)01519-9
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223–233. https://doi.org/10.1016/S1364-6613(00)01482-0
Haxby, J. V., Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffman, E. A., & Martin, A.(1999). The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 22(1), 189–199. https://doi.org/10.1016/S0896-6273(00)80690-X
Heinrich, S. P., Mell, D., & Bach, M. (2009). Frequency-domain analysis of fast oddball responses to visual stimuli: A feasibility study. International Journal of Psychophysiology, 73, 287–289. https://doi.org/10.1016/j.ijpsycho.2009.04.011
Heisz, J. J., Watter, S., & Shedden, J. A. (2006). Automatic face identity encoding at the N170. Vision Research, 46, 4604–4614. https://doi.org/10.1016/j.visres.2006.09.026
Helmholtz, H. (1867). Handbuch der physiologischen Optik. In G. Karsten (Ed.), Allgemeine Encyklopddie der Physik (Vol. 9). Leipzig, Germany: Voss.
Henson, R. N. (2016). Repetition suppression to faces in the fusiform face area: A personal and dynamic journey. Cortex, 80, 174–184. https://doi.org/10.1016/j.cortex.2015.09.012
Hermann, P., Grotheer, M., Kovacs, G., & Vidnyanszky, Z. (2017). The relationship between repetition suppression and face perception. Brain Imaging and Behavior, 11(4), 1018–1028. https://doi.org/10.1007/s11682-016-9575-9
Herrmann, C. S. (2001). Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3–4), 346–353. https://doi.org/10.1007/s002210100682
Herzmann, G., Kunina, O., Sommer, W., & Wilhelm, O. (2010). Individual differences in face cognition: Brain-behavior relationships. Journal of Cognitive Neuroscience, 22, 571–589. https://doi.org/10.1162/jocn.2009.21249
Hildebrandt, A., Wilhelm, O., Schmiedek, F., Herzmann, G., & Sommer, W. (2011). On the specificity of face cognition compared with general cognitive functioning across adult age. Psychology and Aging, 26, 701–715. https://doi.org/10.1037/a0023056
Hills, P. J., & Lewis, M. B. (2018). The development of face expertise: Evidence for a qualitative change in processing. Cognitive Development, 48, 1–18. https://doi.org/10.1016/j.cogdev.2018.05.003
Hobson, R. P., Ouston, J., & Lee, A. (1988). What’s in a face? The case of autism. British Journal of Psychology, 79(4), 441–453. https://doi.org/10.1111/j.2044-8295.1988.tb02745.x
Hochberg, J., & Galper, R. E. (1967). Recognition of faces: I. An exploratory study. Psychonomic Science, 9(12), 619–620. https://doi.org/10.3758/BF03327918
Hole, G. J. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23, 65–74. https://doi.org/10.1068/p230065
Hönegger, C., Atteneder, C., Griesmayr, B., Holz, E., Weber, E., & Sauseng, P. (2011). Neural correlates of visuo-spatial working memory encoding—An EEG study. Neuroscience Letters, 500, 118–122. https://doi.org/10.1016/j.neulet.2011.06.017
Hsiao, J. H., & Cottrell, G. (2008). Two fixations suffice in face recognition. Psychological Science, 19, 998–1006. https://doi.org/10.1111/j.1467-9280.2008.02191.x
Hughes, B. L., Camp, N. P., Gomez, J., Natu, V. S., Grill-Spector, K., & Eberhardt, J. L. (2019). Neural adaptation to faces reveals racial outgroup homogeneity effects in early perception. Proceedings of the National Academy of Sciences of the United States of America, 116, 14532–14537. https://doi.org/10.1073/pnas.1822084116
Itier, R. J., & Taylor, M. J. (2004). Effects of repetition and configural changes on the development of face recognition processes. Developmental Science, 7, 469–487. https://doi.org/10.1111/j.1467-7687.2004.00367.x
Itz, M. L., Golle, J., Luttmann, S., Schweinberger, S. R., & Kaufmann, J. M. (2017). Dominance of texture over shape in facial identity processing is modulated by individual abilities. British Journal of Psychology, 108, 369–396. https://doi.org/10.1111/bjop.12199
Jacques, C., d'Arripe, O., & Rossion, B. (2007). The time course of the inversion effect during individual face discrimination. Journal of Vision, 7(8), 1–9.
Jacques, C., & Rossion, B. (2009). The initial representation of individual faces in the right occipito-temporal cortex is holistic: Electrophysiological evidence from the composite face illusion. Journal of Vision, 9(6): 8, 1–16.
Jacques, C., Rossion, B., Volfart, A., Brissart, H., Colnat-Coulbois, S., Maillard, L., & Jonas, J. (2020). The neural basis of rapid unfamiliar face individuation with human intracerebral recordings. NeuroImage, 117174
Jemel, B., Mottron, L., & Dawson, M. (2006). Impaired face processing in autism: Fact or artifact? Journal of Autism and Developmental Disorders, 36, 91–106. https://doi.org/10.1007/s10803-005-0050-5
Jenkins, R., Dowsett, A.J., & Burton, A.M. (2018). How many faces do people know? Proceedings Biological Sciences, 285(1888).20181319
Jenkins, R., White, D., Van Montfort, X., & Burton, A. M. (2011). Variability in photos of the same face. Cognition, 121(3), 313–323. https://doi.org/10.1016/j.cognition.2011.08.001
Jonas, J., Brissart, H., Hossu, G., Colnat-Coulbois, S., Vignal, J.-P., Rossion, B., & Maillard, L. (2018). A face identity hallucination (palinopsia) generated by intracerebral stimulation of the face-selective right lateral fusiform cortex. Cortex, 99, 296–310. https://doi.org/10.1016/j.cortex.2017.11.022
Jonas, J., Descoins, M., Koessler, L., Colnat-Coulbois, S., Sauvee, M., Guye, M., … Maillard, L. (2012). Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience, 222, 281–288. https://doi.org/10.1016/j.neuroscience.2012.07.021
Jonas, J., Jacques, J., Liu-Shuang, J., Brissart, H., Colnat-Coulbois, S., Maillard, L., & Rossion, B. (2016). A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proceedings of the National Academy of Science USA, 113, E4088–E4097.
Jonas, J., Rossion, B., Brissart, H., Frismand, S., Jacques, C., Hossu, G., … Maillard, L. (2015). Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex, 72, 140–155. https://doi.org/10.1016/j.cortex.2015.05.026
Jonas, J., Rossion, B., Krieg, J., Koessler, L., Colnat-Coulbois, S., Vespignani, H., … Maillard, L. (2014). Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. NeuroImage, 99, 487–497. https://doi.org/10.1016/j.neuroimage.2014.06.017
Kaltwasser, L., Hildebrandt, A., Recio, G., Wilhelm, O., & Sommer, W. (2014). Neurocognitive mechanisms of individual differences in face cognition: A replication and extension. Cognitive, Affective, & Behavioural Neuroscience, 14, 61–78. https://doi.org/10.3758/s13415-013-0234-y
Kang, E., Keifer, C. M., Levy, E. J., Foss-Feig, J. H., McPartland, J. C., & Lerner, M. D. (2018). Atypicality of the N170 event-related potential in autism spectrum disorder: A meta-analysis. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 3, 657–666. https://doi.org/10.1016/j.bpsc.2017.11.003
Kanwisher, N. (2017). The quest for the FFA and where it led. The Journal of Neuroscience, 37, 1056–1061. https://doi.org/10.1523/JNEUROSCI.1706-16.2016
Keitel, C., Quigley, C., & Ruhnau, P. (2014). Stimulus-driven brain oscillations in the alpha range: Entrainment of intrinsic rhythms or frequency-following response? Journal of Neuroscience, 34, 10137–10140. https://doi.org/10.1523/JNEUROSCI.1904-14.2014
Kelly, D. J., Liu, S., Lee, K., Quinn, P. C., Pascalis, O., Slater, A. M., & Ge, L. (2009). Development of the other-race effect during infancy: Evidence toward universality? Journal of Experimental Child Psychology, 104(1), 105–114.
Kennerknecht, I., Grueter, T., Welling, B., Wentzek, S., Horst, J., Edwards, S., & Grueter, M. (2006). First report of prevalence of non-syndromic hereditary prosopagnosia (HPA). American Journal of Medical Genetics. Part A, 140, 1617–1622. https://doi.org/10.1002/ajmg.a.31343
Key, A. P., & Corbett, B. A. (2020). The unfulfilled promise of the N170 as a social biomarker. Biol Psychiatry Cogn Neurosci Neuroimaging, 5, 342–353. https://doi.org/10.1016/j.bpsc.2019.08.011
Keysers, C., & Perrett, D. I. (2002). Visual masking and RSVP reveal neural competition. Trends in Cognitive Science, 6, 120–125. https://doi.org/10.1016/S1364-6613(00)01852-0
Keysers, C., Xiao, D.-K., Földiák, P., & Perrett, D. I. (2001). The speed of sight. Journal of Cognitive Neuroscience, 13, 90–101. https://doi.org/10.1162/089892901564199
Kimura, M., Schröger, E., & Czigler, I. (2011). Visual mismatch negativity and its importance in visual cognitive sciences. NeuroReport, 22, 669–673. https://doi.org/10.1097/WNR.0b013e32834973ba
Kimura, M., Widmann, A., & Schröger, E. (2010). Human visual system automatically represents large-scale sequential regularities. Brain Research, 1317, 165–179. https://doi.org/10.1016/j.brainres.2009.12.076
Kirschstein, T., & Köhling, R. (2009). What is the source of the EEG? Clinical EEG and Neuroscience, 40, 146–149.
Kok, R., Taubert, J., Van der Burg, E., Rhodes, G., & Alais, D. (2017). Face familiarity promotes stable identity recognition: Exploring face perception using serial dependence. Royal Society Open Science, 4(3), 160685.
Kovács, G., Zimmer, M., Bankó, E., Harza, I., Antal, A., & Vidnyánszky, Z. (2006). Electrophysiological correlates of visual adaptation to faces and body parts in humans. Cerebral Cortex, 16, 742–753. https://doi.org/10.1093/cercor/bhj020
Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 20600–20605. https://doi.org/10.1073/pnas.0705654104
Kuefner, D., de Heering, A., Jacques, C., Palmero-Soler, E., & Rossion, B. (2010). Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Frontiers in Human Neuroscience, 3, 67. https://doi.org/10.3389/neuro.09.067.2009
Laguesse, R., Dormal, G., Biervoye, A., Kuefner, D., & Rossion, B. (2012). Extensive visual training in adulthood significantly reduces the face inversion effect. Journal of Vision, 12(14), 1–13. https://doi.org/10.1167/12.10.14
Langdell, T. (1978). Recognition of faces: An approach to the study of autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 19(3), 255–268. https://doi.org/10.1111/j.1469-7610.1978.tb00468.x
Laughery, K. R., Alexander, J. F., & Lane, A. B. (1971). Recognition of human faces: Effects of target exposure, target position, pose position and type of photograph. Journal of Applied Psychology, 55, 477–483.
Lavallée, M. M., Gandini, D., Rouleau, I., Vallet, G. T., Joannette, M., Kergoat, M.-J., … Joubert, S. (2016). A qualitative impairment in face perception in Alzheimer's disease: Evidence from a reduced face inversion effect. Journal of Alzheimer's Disease, 51, 1225–1236. https://doi.org/10.3233/JAD-151027
Leider, F., Daunizeau, J., Garrido, M. I., Friston, K. J., & Stephan, K. E. (2013). Modelling trial-by-trial changes in the mismatch negativity. PLoS Computational Biology, 9, e1002911.
Leleu, A., Rekow, D., Poncet, F., Schaal, B., Durand, K., Rossion, B., & Baudouin, J.-Y. (2019). Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 23(2), e12877.https://doi.org/10.1111/desc.12877
Leopold, D. A., O'Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced shape encoding revealed by high-level aftereffects. Nature Neuroscience, 4, 89–94. https://doi.org/10.1038/82947
Li, L., Miller, E. K., & Desimone, R. (1993). The representation of stimulus familiarity in anterior inferior temporal cortex. Journal of Neurophysiology, 69, 1918–1929.
Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behavior Research Methods, 51, 40–60. https://doi.org/10.3758/s13428-018-1076-x
Liu-Shuang, J., Ales, J., Rossion, B., & Norcia, A. M. (2015). Separable effects of inversion and contrast-reversal on face detection thresholds and response functions: A sweep VEP study. Journal of Vision, 15(2), 11.
Liu-Shuang, J., Norcia, A. M., & Rossion, B. (2014). An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 52, 57–72. https://doi.org/10.1016/j.neuropsychologia.2013.10.022
Liu-Shuang, J., Torfs, K., & Rossion, B. (2016). An objective electrophysiological marker of face individualisation impairment in acquired prosopagnosia with fast periodic visual stimulation. Neuropsychologia, 83, 100–113. https://doi.org/10.1016/j.neuropsychologia.2015.08.023
Lochy, A., Schiltz, C., & Rossion, B. (2020). The right hemispheric dominance for face perception in preschool children depends on visual discrimination level. Developmental Science, 16, e12914.
Lochy, A., Zimmermann, F., Laguesse, R., Willenbockel, V., Rossion, B., & Vuong, Q. (2017). Does extensive training at individuating novel objects in adulthood lead to visual expertise? The role of facelikeness. Journal of Cognitive Neuroscience, 30, 449–467. https://doi.org/10.1162/jocn_a_01212
Logan, A. J., Wilkinson, F., Wilson, H. R., Gordon, G. E., & Loffler, G. (2016). The Caledonian face test: A new test of face discrimination. Vision Research, 119, 29–41. https://doi.org/10.1016/j.visres.2015.11.003
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878. https://doi.org/10.1038/nature06976
Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.
Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295, 690–694. https://doi.org/10.1126/science.1066168
Mardo, E., Avidan, G., & Hadad, B. S. (2018). Adults' markers of face processing are present at age 6 and are interconnected along development. Perception, 47, 1002–1028. https://doi.org/10.1177/0301006618794943
Martin-Malivel, J., Mangini, M. C., Fagot, J., & Biederman, I. (2006). Do humans and baboons use the same information when categorizing human and baboon faces? Psychological Science, 17(7), 599–607. https://doi.org/10.1111/j.1467-9280.2006.01751.x
Mazard, A., Schiltz, C., & Rossion, B. (2006). Recovery from adaptation to facial identity is larger for upright than inverted faces in the human occipito-temporal cortex. Neuropsychologia, 44(6), 912–922. https://doi.org/10.1016/j.neuropsychologia.2005.08.015
McCaffery, J. M., Robertson, D. J., Young, A. W., & Burton, A. W. (2018). Individual differences in face identity processing. Cognitive Research: Principles and Implications, 3, 21. https://doi.org/10.1186/s41235-018-0112-9
McConachie, H. R. (1976). Developmental prosopagnosia. A single case report. Cortex, 12, 76–82.
McKone, E., Crookes, K., Jeffery, L., & Dilks, D. D. (2012). A critical review of the development of face recognition: Experience is less important than previously believed. Cognitive Neuropsychology, 29(1–2), 174–212. https://doi.org/10.1080/02643294.2012.660138
Meadows, J. C. (1974). The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery & Psychiatry, 37(5), 489–501. https://doi.org/10.1136/jnnp.37.5.489
Megreya, A. M., & Bindemann, M. (2015). Developmental improvement and age-related decline in unfamiliar face matching. Perception, 44, 5–22. https://doi.org/10.1068/p7825
Megreya, A. M., & Burton, M. (2006). Unfamiliar faces are not faces: Evidence from a matching task. Memory & Cognition, 34, 865–876. https://doi.org/10.3758/BF03193433
Meigen, T., & Bach, M. (2000). On the statistical significance of electrophysiological steady-state responses. Documenta Ophthalmologica, 98(3), 207–232.
Meyer, K., Schmitz, F., Wilhelm, O., & Hildebrandt, A. (2019). Perceiving faces: Too much, too fast?-face specificity in response caution. Journal of Experimental Psychology: Human Perception and Performance, 45, 16–38. https://doi.org/10.1037/xhp0000582
Milner, B. (1968). Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia, 6, 191–209. https://doi.org/10.1016/0028-3932(68)90019-5
Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing develops more slowly than featural face processing. Perception, 31, 553–566. https://doi.org/10.1068/p3339
Mondloch, C. J., Maurer, D., & Ahola, S. (2006). Becoming a face expert. Psychological Science, 17, 930–934. https://doi.org/10.1111/j.1467-9280.2006.01806.x
Munsters, N. M., van Ravenswaaij, H., van den Boomen, C., & Kemner, C. (2019). Test-retest reliability of infant event related potentials evoked by faces. Neuropsychologia, 126, 20–26. https://doi.org/10.1016/j.neuropsychologia.2017.03.030
Mur, M., Ruff, D. A., Bodurka, J., Bandettini, P. A., & Kriegeskorte, N. (2010). Face-identity change activation outside the face system: “Release from adaptation” may not always indicate neuronal selectivity. Cerebral Cortex, 20, 2027–2042. https://doi.org/10.1093/cercor/bhp272
Murphy, J., Gray, K. L., & Cook, R. (2017). The composite face illusion. Psychonomic Bulletin & Review, 24, 245–261. https://doi.org/10.3758/s13423-016-1131-5
Nemrodov, D., Jacques, C., & Rossion, B. (2015). Temporal dynamics of repetition suppression to individual faces presented at a fast periodic rate. International Journal of Psychophysiology, 98, 35–43. https://doi.org/10.1016/j.ijpsycho.2015.06.006
Niemeier, M., Patel, A., & Nestor, A. (2016). The neural dynamics of facial identity processing: insights from EEG-based pattern analysis and image reconstruction. dNeuro, 5(1):ENEURO.0358-17.2018
Nestor, A., Plaut, D. C., & Behrmann, M. (2011). Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proceedings of the National Academy of Sciences of the United States of America, 108, 9998–10003. https://doi.org/10.1073/pnas.1102433108
Nestor, A., Plaut, D. C., & Behrmann, M. (2016). Feature-based face representations and image reconstruction from behavioral and neural data. Proceedings of the National Academy of Sciences of the United States of America, 113, 416–421. https://doi.org/10.1073/pnas.1514551112
Newport, C., Wallis, G., Reshitnyk, Y., & Siebeck, U. E. (2016). Discrimination of human faces by archerfish (Toxotes chatareus). Scientific Reports, 6, 27523. https://doi.org/10.1038/srep27523
Nomi, J. S., & Uddin, L. Q. (2015). Face processing in autism spectrum disorders: From brain regions to brain networks. Neuropsychologia, 71, 201–216. https://doi.org/10.1016/j.neuropsychologia.2015.03.029
Norcia, A. M., Appelbaum, L. G. G., Ales, J. M. J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15(6), 4. https://doi.org/10.1167/15.6.4
Notbohm, A., & Herrmann, C. S. (2016). Flicker regularity is crucial for entrainment of alpha oscillations. Frontiers in Human Neuroscience, 10, 503. eCollection 2016.
Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain. Oxford, UK: Oxford University Press.
O’Shea, R. P. (2015). Refractoriness about adaptation. Frontiers in Human Neuroscience, 9(38), 1–3. https://doi.org/10.3389/fnhum.2015.00038
Or, C., Rossion, B., & Liu-Shuang, J. (in preparation).Generalization of rapid automatic unfamiliar face individuation across head orientation.
Orban de Xivry, J.-J., Ramon, M., Lefèvre, P., & Rossion, B. (2008). Reduced fixation on the upper area of personally familiar faces following acquired prosopagnosia. Journal of Neuropsychology, 2, 245–268. https://doi.org/10.1348/174866407X260199
O'Toole, A. J., Price, T., Vetter, T., Bartlett, J. C., & Blanz, V. (1999). 3D shape and 2D surface textures of human faces: The role of. Image and Vision Computing, 18, 9–19.
Palermo, P., Rossion, B., Rhodes, G., Laguesse, R., Tez, T., Hall, B., … McKone, E. (2017). Do people have insight into their face recognition abilities? Quarterly Journal of Experimental Psychology, 70, 208–223. https://doi.org/10.1080/17470218.2016.1161058
Palermo, R., & Rhodes, G. (2007). Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia, 45, 75–92. https://doi.org/10.1016/j.neuropsychologia.2006.04.025
Parketny, J., Towler, J., & Eimer, M. (2015). The activation of visual face memory and explicit face recognition are delayed in developmental prosopagnosia. Neuropsychologia, 75, 538–547. https://doi.org/10.1016/j.neuropsychologia.2015.07.009
Parr, L. A., Heintz, M., & Pradhan, G. (2008). Rhesus monkeys (Macaca mulatta) lack expertise in face processing. Journal of Comparative Psychology, 122, 390–402. https://doi.org/10.1037/0735-7036.122.4.390
Pascalis, O., De Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296, 1321–1323. https://doi.org/10.1126/science.1070223
Pascalis, O., & de Schonen, S. (1994). Recognition memory in 3- to 4-day-old human neonates. NeuroReport, 5, 1721–1724. https://doi.org/10.1097/00001756-199409080-00008
Peirce, J. W., Leigh, A. E., daCosta, A. P. C., & Kendrick, K. M. (2001). Human face recognition in sheep: Lack of configurational coding and right hemisphere advantage. Behavioural Processes, 55(1), 13–26. https://doi.org/10.1016/S0376-6357(01)00158-9
Perrett, D. I., Mistlin, A. J., Chitty, A. J., Smith, P. A. J., Potter, D. D., Broennimann, R., & Harries, M. (1988). Specialized face processing and hemispheric asymmetry in man and monkey: Evidence from single unit and reaction time studies. Behavioral Brain Research, 29, 245–258. https://doi.org/10.1016/0166-4328(88)90029-0
Peterson, M. F., & Eckstein, M. P. (2012). Looking just below the eyes is optimal across face recognition tasks. Proceedings of the National Academy of Sciences of the United States of America, 109(48), E3314–E3323.
Peterson, M. F., & Eckstein, M. P. (2013). Individual differences in eye movements during face identification reflect observer-specific optimal points of fixation. Psychological Science, 24(7), 1216–1225. https://doi.org/10.1177/0956797612471684
Peykarjou, S., Hoehl, S., Pauen, S., & Rossion, B. (2017). Rapid categorization of human and ape faces in 9-month-old infants revealed by fast periodic visual stimulation. Scientific Reports., 7(1), 12526. https://doi.org/10.1038/s41598-017-12760-2
Peykarjou, S., Pauen, S., & Hoehl, S. (2014). How do 9-month-old infants categorize human and ape faces? A rapid repetition ERP study. Psychophysiology, 51(9), 866–878.
Peykarjou, S., Pauen, S., & Hoehl, S. (2015). 9-month-old infants recognize individual unfamiliar faces in a rapid repetition ERP paradigm. Infancy, 21, 288–311. https://doi.org/10.1111/infa.12118
Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479. https://doi.org/10.1097/00004691-199210000-00002
Pitcher, D., Walsh, V., Yovel, G., & Duchaine, B. (2007). TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology, 17(18), 1568–1573. https://doi.org/10.1016/j.cub.2007.07.063
Powell, G., Jones, C. R. G., Hedge, C., Charman, T., Happé, F., Simonoff, E., & Sumner, P. (2019). Face processing in autism spectrum disorder re-evaluated through diffusion models. Neuropsychology, 33(4), 445–461.
Puce, A., Allison, T., & McCarthy, G. (1999). Electrophysiological studies of human face perception. III. Effects of top-down processing on face-specific potentials. Cerebral Cortex, 9, 445–458. https://doi.org/10.1093/cercor/9.5.445
Purves, D., Morgenstern, Y., & Wojtach, W. T. (2015). Perception and reality: Why a wholly empirical paradigm is needed to understand vision. Frontiers in Systems Neuroscience, 18(9), 156. https://doi.org/10.3389/fnsys.2015.00156
Quek, G., Liu-Shuang, J., Goffaux, V., & Rossion, B. (2018). Ultra-coarse, single-glance human face detection in a dynamic visual stream. NeuroImage, 16, 465–476. https://doi.org/10.1016/j.neuroimage.2018.04.034
Quek, G., Nemrodov, D., Rossion, B., & Liu-Shuang, J. (2018). Selective attention to faces in a rapid visual stream: Hemispheric differences in enhancement and suppression of category-selective neural activity. Journal of Cognitive Neuroscience, 30, 393–410. https://doi.org/10.1162/jocn_a_01220
Quek, G., & Rossion, B. (2017). Category-selective human brain processes elicited in fast periodic visual stimulation streams are immune to temporal predictability. Neuropsychologia, 104, 182–200. https://doi.org/10.1016/j.neuropsychologia.2017.08.010
Ramon, M., Dricot, L., & Rossion, B. (2010). Personally familiar faces are perceived categorically in face-selective regions other than the FFA. European Journal of Neuroscience, 32, 1587–1598.
Ramon, M., & Gobbini, M. I. (2018). Familiarity matters: A review on prioritized processing of personally familiar faces. Visual Cognition, 26(3), 179–195. https://doi.org/10.1080/13506285.2017.1405134
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87. https://doi.org/10.1038/4580
Reed, C. L., Beall, P. M., Stone, V. E., Kopelioff, L., Pulham, D. J., & Hepburn, S. L. (2007). Brief report: Perception of body posture—what individuals with autism spectrum disorder might be missing. Journal of Autism and Developmental Disorders, 37(8), 1576–1584. https://doi.org/10.1007/s10803-006-0220-0
Regan, D. (1966). Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalography and Clinical Neurophysiology, 20, 238–248. https://doi.org/10.1016/0013-4694(66)90088-5
Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York, NY: Elsevier.
Regan, D., & Heron, J. R. (1969). Clinical investigation of lesions of the visual pathway: A new objective technique. Journal of Neurology, Neurosurgery and Psychiatry, 32, 479–483.
Retter, T., Jiang, F., Webster, M., & Rossion, B. (2018). Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization. Vision Research, 145(11), 20. https://doi.org/10.1016/j.visres.2018.02.009
Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91(9), 28. https://doi.org/10.1016/j.neuropsychologia.2016.07.028
Retter, T., & Rossion, B. (2016b). Visual adaptation provides objective electrophysiological evidence of facial identity discrimination. Cortex, 80, 35–50. https://doi.org/10.1016/j.cortex.2015.11.025
Retter, T., & Rossion, B. (2017). Visual adaptation reveals an objective electrophysiological measure of high-level individual face discrimination. Scientific Reports, 7(1), 3269.
Retter, T., Jiang, F., Webster, M., & Rossion, B. (2020). All-or-none face categorization in the human brain. NeuroImage, 116685. https://doi.org/10.1016/j.neuroimage.2020.116685.
Retter, T.L., Jiang, F., Webster, M.A., Michel, C., Schiltz, C., & Rossion, B. (in preparation). Varying stimulus duration reveals consistent individual differences across neural activity and behavior in human face individuation.
Rey, H. G., Gori, B., Chaure, F. J., Collavini, S., Blenkmann, A. O., Seoane, P., … Quian Quiroga, R. (2020). Single neuron coding of identity in the human hippocampal formation. Current Biology, 30, 1152–1159. https://doi.org/10.1016/j.cub.2020.01.035
Righi, G., Westerlund, A., Congdon, E. L., Troller-Renfree, S., & Nelson, C. A. (2014). Infants' experience-dependent processing of male and female faces: Insights from eye tracking and event-related potentials. Developmental Cognitive Neuroscience, 8, 144–152. https://doi.org/10.1016/j.dcn.2013.09.005
Ritter, W., & Vaughan, H. G. (1969). Averaged evoked responses in vigilance and discrimination: A reassessment. Science, 164, 326–328. https://doi.org/10.1126/science.164.3877.326
Ritter, W. H., Vaughan, H. G., & Costa, L. (1968). Orienting and habituation to auditory stimuli: A study of short term changes in averaged evoked responses. Electroencephalography and Clinical Neurophysiology, 25, 550–560.
Rolls, E. T., Baylis, G. C., Hasselmo, M. E., & Nalwa, V. (1989). The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Experimental Brain Research, 76(1), 153–164.
Rose, F. E., Lincoln, A. J., Lai, Z., Ene, M., Searcy, Y. M., & Bellugi, U. (2007). Orientation and affective expression effects on face recognition in Williams syndrome and autism. Journal of Autism and Developmental Disorders, 37, 513–522. https://doi.org/10.1007/s10803-006-0200-4
Rosenthal, G., Sporns, O., & Avidan, G. (2017). Stimulus dependent dynamic reorganization of the human face processing network. Cerebral Cortex, 27, 4823–4834.
Rosset, D. B., Rondan, C., Fonseca, D. D., Santos, A., Assouline, B., & Deruelle, C. (2008). Typical emotion processing for cartoon but not for real faces in children with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 38, 919–925. https://doi.org/10.1007/s10803-007-0465-2
Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 128, 274–289. https://doi.org/10.1016/j.actpsy.2008.02.003
Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: The perceptual field hypothesis. Acta Psychologica, 132, 300–312. https://doi.org/10.1016/j.actpsy.2009.08.002
Rossion, B. (2013). The composite face illusion: A window to our understanding of holistic face perception. Visual Cognition, 121, 139–253.
Rossion, B. (2014). Understanding face perception by means of prosopagnosia and neuroimaging. Frontiers in Bioscience, 6(2), 258–307.
Rossion, B. (2018a). Humans are visual experts at unfamiliar face recognition. Trends in Cognitive Sciences, 22, 471–472. https://doi.org/10.1016/j.tics.2018.03.002
Rossion, B. (2018b). Damasio’s error – Prosopagnosia with intact within-category object recognition. Journal of Neuropsychology, 12(3), 357–388. https://doi.org/10.1111/jnp.12162
Rossion, B. (2018c). Prosopdysgnosia? What could it tell us about the neural organization of face and object recognition? Cognitive Neuropsychology, 35, 98–101. https://doi.org/10.1080/02643294.2017.1414778
Rossion, B. (2020). Biomarkers of face perception in autism spectrum disorder: Time to shift to rapid periodic visual stimulation with electroencephalography? Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 258–260.
Rossion, B., & Boremanse, A. (2011). Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. Journal of Vision., 11(2), 16, 1–21. https://doi.org/10.1167/11.2.16
Rossion, B., Caldara, R., Seghier, M., Schuller, A.-M., Lazeyras, F., & Mayer, E. (2003). A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain, 126, 2381–2395. https://doi.org/10.1093/brain/awg241
Rossion, B., & Jacques, C. (2008). Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. NeuroImage, 39, 1959–1979. https://doi.org/10.1016/j.neuroimage.2007.10.011
Rossion, B., & Jacques, C. (2011). The N170: Understanding the time-course of face perception in the human brain. In S. Luck, & E. Kappenman (Eds.), The oxford handbook of ERP components (pp. 115–142). NY: Oxford University Press.
Rossion, B., Jacques, C., & Jonas, J. (2018). Mapping face categorization in the human ventral occipito-temporal cortex with direct neural intracranial recordings. Annals of the New York Academy of Science, 1426, 5–24.
Rossion, B., & Michel, C. (2018). Normative data for accuracy and response times at the computerized Benton Facial Recognition Test (BFRT-c). Behavior Research Methods, 50, 2442–2460.
Rossion, B., Prieto, E. A., Boremanse, A., Kuefner, D., & Van Belle, G. (2012). A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63, 1585–1600. https://doi.org/10.1016/j.neuroimage.2012.08.033
Rossion, B., & Retter, T. (2015). Holistic face perception: Mind the gap!. Visual Cognition, 23, 379–398. https://doi.org/10.1080/13506285.2014.1001472
Rossion, B., & Retter, T. L. (2020). Face perception. In D. Poeppel, M. S. Gazzaniga, & G. Mangun (Eds.), The cognitive neurosciences, (129–139). Cambridge: The MIT Press.
Rossion, B., & Taubert, J. (2019). What can we learn about human individual face recognition from experimental studies in monkeys? Vision Research, 157, 142–158. https://doi.org/10.1016/j.visres.2018.03.012
Rostalski, S.-M., Amado, C., & Kovács, G. (2019). Repetition suppression for noisy and intact faces in the occipito-temporal cortex. Frontiers in Psychology, 10, 1348. https://doi.org/10.3389/fpsyg.2019.01348
Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2007). Single-trial EEG dynamics of object and face visual processing. NeuroImage, 36, 843–862. https://doi.org/10.1016/j.neuroimage.2007.02.052
Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2008). Time course and robustness of ERP object and face differences. Journal of Vision, 8(12), 3. https://doi.org/10.1167/8.12.3
Rossion, B., Dormal, G., Lochy, A., Laguesse, R., & Retter, T. (in preparation). Holistic perception of individual faces: automatic, objective and at a single glance.
Russell, R., Biederman, I., Nederhouser, M., & Sinha, P. (2007). The utility of surface reflectance for the recognition of upright and inverted faces. Vision Research, 47, 157–165. https://doi.org/10.1016/j.visres.2006.11.002
Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognisers: People with extraordinary face recognition ability. Psychonomic Bulletin & Review, 16, 252–257.
Russell, R., Sinha, P., Biederman, I., & Nederhouser, M. (2006). Is pigmentation important for face recognition? Evidence from contrast negation. Perception, 356, 749–759. https://doi.org/10.1068/p5490
Sai, F. Z. (2005). The role of the mother's voice in developing mother's face preference: Evidence for intermodal perception at birth. Infant and Child Development, 14(1), 29–50. https://doi.org/10.1002/icd.376
Sangrigoli, S., & de Schonen, S. (2004). Effect of visual experience on face processing: A developmental study of inversion and non-native effects. Developmental Science, 7(1), 74–87.
Sawamura, H., Orban, G. A., & Vogels, R. (2006). Selectivity of neuronal adaptation does not match response selectivity: A single-cell study of the FMRI adaptation paradigm. Neuron, 49, 307–318. https://doi.org/10.1016/j.neuron.2005.11.028
Scherf, K. S., Behrmann, M., Humphreys, K., & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 10, 15–30. https://doi.org/10.1111/j.1467-7687.2007.00595.x
Scherf, K. S., Behrmann, M., Minshew, N., & Luna, B. (2008). Atypical development of face and greeble recognition in autism. Journal of Child Psychology and Psychiatry, 49, 838–847. https://doi.org/10.1111/j.1469-7610.2008.01903.x
Scherf, K.S., Luna, B., Avidan, G., & Behrmann, M. (2011). "What" precedes "which": developmental neural tuning in face- and place-related cortex. Cereb Cortex, 21(9), 1963–1980.
Schiltz, C., & Rossion, B. (2006). Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 32, 1385–1394. https://doi.org/10.1016/j.neuroimage.2006.05.037
Schiltz, C., Sorger, B., Caldara, R., Ahmed, F., Mayer, E., Goebel, R., & Rossion, B. (2006). Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus. Cerebral Cortex, 16, 574–586. https://doi.org/10.1093/cercor/bhj005
Schwartz, L., & Yovel, G. (2016). The roles of perceptual and conceptual information in face recognition. J Exp Psychol Gen, 145(11), 1493–1511.
Schwarzer, G. (2000). Development of face processing: The effect of face inversion. Child Development, 71, 391–401. https://doi.org/10.1111/1467-8624.00152
Schweinberger, S. R., Huddy, V., & Burton, M. (2004). N250r: A face-selective brain response to stimulus repetitions. NeuroReport, 15, 1501–1505. https://doi.org/10.1097/01.wnr.0000131675.00319.42
Schweinberger, S. R., & Neumann, M. F. (2016). Repetition effects in human ERPs to faces. Cortex, 80, 141–153. https://doi.org/10.1016/j.cortex.2015.11.001
Schweinberger, S. R., Pfütze, E.-M., & Sommer, W. (1995). Repetition priming and associative priming of face recognition: Evidence from event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 722–736.
Schweinberger, S. R., Pickering, E. C., Jentzsch, I., Burton, A. M., & Kaufmann, J. M. (2002). Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Brain Research. Cognitive Brain Research, 14, 398–409. https://doi.org/10.1016/S0926-6410(02)00142-8
Scott, L. S., Shannon, R. W., & Nelson, C. A. (2006). Neural correlates of human and monkey face processing by 9-month-old infants. Infancy., 10, 171–186.
Sergent, J. (1989). Structural processing of faces. In A. W. Young, & H. D. Ellis (Eds.), Handbook of research on face processing (pp. 57–91). Amsterdam, the Netherlands: Elsevier.
Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing. Brain, 115, 15–36. https://doi.org/10.1093/brain/115.1.15
Sergent, J., & Signoret, J. L. (1992). Varieties of functional deficits in prosopagnosia. Cerebral Cortex, 2, 375–388. https://doi.org/10.1093/cercor/2.5.375
Sheehan, M. J., & Nachman, M. W. (2014). Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nature Communications, 5, 4800. https://doi.org/10.1038/ncomms5800
Sheehan, M. J., & Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science, 334, 1272–1275. https://doi.org/10.1126/science.1211334
Sherrington, C. S. (1947). The integrative action of the nervous system. New Haven, CT: Yale University Press.
Simson, R., Vaughn, H. G., & Ritter, W. (1977). The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 42, 528–535. https://doi.org/10.1016/0013-4694(77)90216-4
Sorensen, T. A., & Overgaard, M. S. (2018). Prosopagnosia or prosopdysgnosia: Facing up to a change of concepts. 2018 10th International Conference on Knowledge and Smart Technology (KST).
Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local entrainment of α oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34(10), 3536–3544.
Srinivasan, R., Russell, D. P., Edelman, G. M., & Tononi, G. (1999). Increased synchronization of neuromagnetic responses during conscious perception. The Journal of Neuroscience, 19(13), 5435–5448. https://doi.org/10.1523/JNEUROSCI.19-13-05435.1999
Stacchi, L., Huguenin-Elie, E., Caldara, R., & Ramon, M. (2020). Normative data for two challenging tests of face matching under ecological conditions. Cognitive Research: Principles and Implications, 5(1), 8.
Stacchi, L., Liu-Shuang, J., Ramon, M., & Caldara, R. (2019). Reliability of individual differences in neural face identity discrimination. NeuroImage, 189, 468–475. https://doi.org/10.1016/j.neuroimage.2019.01.023
Stacchi, L., Ramon, M., Lao, J., & Caldara, R. (2019). Neural Representations of faces are tuned to eye movements. Journal of Neuroscience, 39(21), 4113–4123.
Stefanics, G., Heinzle, J., Horváth, A. A., & Stephan, K. E. (2018). Visual mismatch and predictive coding: A computational single-trial ERP study. Journal of Neuroscience, 38, 4020–4030. https://doi.org/10.1523/JNEUROSCI.3365-17.2018
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11, 1004–1006. https://doi.org/10.1038/nn.2163
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150, 1187–1188.
Tanaka, J. W., Curran, T., Porterfield, A. L., & Collins, D. (2006). Activation of preexisting and acquired face representations: The N250 event-related potential as an index of face familiarity. Journal of Cognitive Neuroscience, 18, 1488–1497. https://doi.org/10.1162/jocn.2006.18.9.1488
Tang, J., Falkmer, M., Horlin, C., Tan, T., Vaz, S., & Falkmer, T. (2015). Face Recognition and visual search strategies in autism spectrum disorders: Amending and extending a recent review by Weigelt et al PLoS One, 10(8), e0134439.
Tantam, D., Monaghan, L., Nicholson, H., & Stirling, J. (1989). Autistic children’s ability to interpret faces: A research note. Journal of Child Psychology and Psychiatry, 30, 623–663. https://doi.org/10.1111/j.1469-7610.1989.tb00274.x
Tavares, P. P., Mouga, S. S., Oliveira, G. G., & Castelo-Branco, M. (2016). Preserved face inversion effects in adults with autism spectrum disorder: An event-related potential study. NeuroReport, 27, 587–592. https://doi.org/10.1097/WNR.0000000000000576
Taylor, M. J., Batty, M., & Itier, R. J. (2004). The faces of development: A review of early face processing over childhood. Journal of Cognitive Neuroscience, 16, 1426–1442. https://doi.org/10.1162/0898929042304732
Todorovic, A., & de Lange, F. P. (2012). Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. Journal of Neuroscience, 32, 13389–13395. https://doi.org/10.1523/JNEUROSCI.2227-12.2012
Towler, J., Gosling, A., Duchaine, B., & Eimer, M. (2012). The face-sensitive N170 component in developmental prosopagnosia. Neuropsychologia, 50, 3588–3599. https://doi.org/10.1016/j.neuropsychologia.2012.10.017
Tranel, D., Vianna, E., Manzel, K., Damasio, H., & Grabowski, T. (2009). Neuroanatomical correlates of the benton facial recognition test and judgment of line orientation test. Journal of Clinical and Experimental Neuropsychology, 31, 219–233. https://doi.org/10.1080/13803390802317542
Tsao, D. Y., Moeller, S., & Freiwald, W. A. (2008). Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 19514–19519. https://doi.org/10.1073/pnas.0809662105
Turano, M. T., Marzi, T., & Viggiano, M. P. (2016). Individual differences in face processing captured by ERPs. International Journal of Psychophysiology, 101, 1–8. https://doi.org/10.1016/j.ijpsycho.2015.12.009
Turati, C., Bulf, H., & Simion, F. (2008). Newborns’ face recognition over changes in viewpoint. Cognition, 106, 1300–1321. https://doi.org/10.1016/j.cognition.2007.06.005
Turati, C., Macchi Cassia, V., Simion, F., & Leo, I. (2006). Newborns’ face recognition: The role of inner and outer facial features. Child Development, 77, 297–311.
Turati, C., Sangrigoli, S., Ruel, J., & de Schonen, S. (2004). Evidence of the face inversion effect in 4-month-old infants. Infancy, 6, 275–297. https://doi.org/10.1207/s15327078in0602_8
Van Der Geest, J. N., Kemner, C., Verbaten, M. N., & Engeland, H. V. (2002). Gaze behavior of children with pervasive developmental disorder toward human faces: A fixation time study. Journal of Child Psychology and Psychiatry, 43, 669–678. https://doi.org/10.1111/1469-7610.00055
VanRullen, R., & Reddy, L. (2019). Reconstructing faces from fMRI patterns using deep generative neural networks. Communications Biology, 2, 193.
Verosky, S. C., Todorov, A., & Turk-Browne, N. B. (2013). Representations of individuals in ventral temporal cortex defined by faces and biographies. Neuropsychologia, 51, 2100–2108. https://doi.org/10.1016/j.neuropsychologia.2013.07.006
Verosky, S. C., Zoner, K. A., Marble, C. W., Sammon, M. M., & Babarinsa, C. O. (2020). Familiarization increases face individuation measured with fast periodic visual stimulation. Biological Psychology, 153, 107883.
Vettori, S., Dzhelyova, M., Van der Donck, S., Jacques, C., Steyaert, J., Rossion, B., & Boets, B. (2019). Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder. Neuroimage Clinical, 21, 101613. https://doi.org/10.1016/j.nicl.2018.101613
Vettori, S., Jacques, C., Boets, B., & Rossion, B. (2019). Can the N170 be used as an electrophysiological biomarker indexing face processing difficulties in ASD? Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 321–323.
Vida, M. D., Nestor, A., Plaut, D. C., & Behrmann, M. (2017). Spatiotemporal dynamics of similarity-based neural representations of facial identity. Proceedings of the National Academy of Sciences of the United States of America, 114, 388–393. https://doi.org/10.1073/pnas.1614763114
Vizioli, L., Rousselet, G. A., & Caldara, R. (2010). Neural repetition suppression to identity is abolished by other-race faces. Proceedings of the National Academy of Sciences of the United States of America, 107, 20081–20086. https://doi.org/10.1073/pnas.1005751107
Vuong, Q. C., Willenbockel, V., Zimmermann, F. G. S., Lochy, A., Laguesse, R., Dryden, A., & Rossion, B. (2017). Facelikeness matters: A parametric multipart object set to understand the role of spatial configuration in visual recognition. Visual Cognition, 24, 406–421. https://doi.org/10.1080/13506285.2017.1289997
Walsh, K. S., McGovern, D. P., Clark, A., & O'Connell, R. G. (2020). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the New York Academy of Sciences, 1464, 242–268. https://doi.org/10.1111/nyas.14321
Walter, W. G., Dovey, V. J., & Shipton, H. (1946). Analysis of the electrical response of the human cortex to photic stimulation. Nature, 158, 540–541. https://doi.org/10.1038/158540a0
Wandell, B. A. (2011). The neurobiological basis of seeing words. Annals of the New York Academy of Sciences, 1224, 63–80. https://doi.org/10.1111/j.1749-6632.2010.05954.x
Want, S. C., Pascalis, P., Coleman, M., & Blades, M. (2003). Recognizing people from inner or outer parts of their faces: Developmental data concerning ‘‘unfamiliar’’ faces. British Journal of Developmental Psychology, 21, 125–135.
Warrington, E. K. (1984). Recognition Memory Test. Windsor, ON: NFER-Nelson.
Webb, S. J., Jones, E. J. H., Merkle, K., Murias, M., Greenson, J., Richards, T., … Dawson, G. (2010). Response to familiar faces, newly familiar faces, and novel faces as assessed by ERPs is intact in adults with autism spectrum disorders. International Journal of Psychophysiology, 77, 106–117. https://doi.org/10.1016/j.ijpsycho.2010.04.011
Weigelt, S., Koldewyn, K., & Kanwisher, N. (2012). Face identity recognition in autism spectrum disorders: A review of behavioral studies. Neuroscience & Biobehavioral Reviews, 36, 1060–1084. https://doi.org/10.1016/j.neubiorev.2011.12.008
White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014). Passport officers’ errors in face matching. PLoS One, 9, e103510.
Wieser, M. J., McTeague, L. M., & Keil, A. (2012). Competition effects of threatening faces in social anxiety. Emotion, 12, 1050–1060. https://doi.org/10.1037/a0027069
Wilhelm, O., Herzmann, G., Kunina, O., Danthiir, V., Schacht, A., & Sommer, W. (2010). Individual differences in perceiving and recognizing faces-one element of social cognition. Journal of Personality and Social Psychology, 99, 530–548. https://doi.org/10.1037/a0019972
Wilmer, J. B. (2017). Individual differences in face recognition: A decade of discovery. Current Directions in Psychological Science, 26, 225–230. https://doi.org/10.1177/0963721417710693
Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Gerbasi, M., & Nakayama, K. (2012). Capturing specific abilities as a window into human individuality: The example of face recognition. Cognitive Neuropsychology, 29, 360–392. https://doi.org/10.1080/02643294.2012.753433
Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., … Duchaine, B. (2010). Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Sciences of the United States of America, 107, 5238–5241. https://doi.org/10.1073/pnas.0913053107
Xu, B., Liu-Shuang, J., Rossion, B., & Tanaka, J. (2017). Individual differences in face identity processing with fast periodic visual stimulation. Journal of Cognitive Neuroscience, 29, 1368–1377. https://doi.org/10.1162/jocn_a_01126
Yan, X., Liu-Shuang, J., & Rossion, B. (2019). Effect of face-related task on rapid individual face discrimination. Neuropsychologia, 129, 236–245. https://doi.org/10.1016/j.neuropsychologia.2019.04.002
Yan, X., Young, A. W., & Andrews, T. J. (2017). The automaticity of face perception is influenced by familiarity. Attention, Perception, & Psychophysics, 79, 2202–2211. https://doi.org/10.3758/s13414-017-1362-1
Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology-Human Perception and Performance, 81, 141–145. https://doi.org/10.1037/h0027474
Young, A. W., & Burton, A. M. (2018). Are we face experts? Trends in Cognitive Sciences, 22(2), 100–110. https://doi.org/10.1016/j.tics.2017.11.007
Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16, 747–759. https://doi.org/10.1068/p160747
Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current Biology, 15(24), 2256–2262. https://doi.org/10.1016/j.cub.2005.10.072
Zhou, H., Melloni, L., Poeppel, D., & Ding, N. (2016). Interpretations of frequency domain analyses of neural entrainment: Periodicity, fundamental frequency, and harmonics. Frontiers in Human Neuroscience, 10, 274. https://doi.org/10.3389/fnhum.2016.00274
Zhu, M., & Rozell, C. J. (2013). Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system. PLoS Computational Biology, 9, e1003191. https://doi.org/10.1371/journal.pcbi.1003191
Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12, 95.