[en] Color constancy involves disambiguating the spectral characteristics of lights and surfaces, for example to distinguish red in white light from white in red light. Solving this problem appears especially challenging for bluish tints, which may be attributed more often to shading, and this bias may underlie the individual differences in whether people described the widely publicized image of #thedress as blue-black or white-gold. To probe these higher-level color inferences, we examined neural correlates of the blue-bias, using frequency-tagging and high-density electroencephalography to monitor responses to 3-Hz alternations between different color versions of #thedress. Specifically, we compared relative neural responses to the original “blue” dress image alternated with the complementary “yellow” image (formed by inverting the chromatic contrast of each pixel). This image pair produced a large modulation of the electroencephalography amplitude at the alternation frequency, consistent with a perceived contrast difference between the blue and yellow images. Furthermore, decoding topographical differences in the blue-yellow asymmetries over occipitoparietal channels predicted blue-black and white-gold observers with over 80% accuracy. The blue-yellow asymmetry was stronger than for a “red” versus “green” pair matched for the same component differences in L versus M or S versus LM chromatic contrast as the blue-yellow pair and thus cannot be accounted for by asymmetries within either precortical cardinal mechanism. Instead, the results may point to neural correlates of a higher-level perceptual representation of surface colors.
Ales, J. M., & Norcia, A. M. (2009). Assessing direction-specific adaptation using the steady-state visual evoked potential: Results from EEG source imaging. Journal of Vision, 9(7): 8, 1-13.
Allison, T., Begleiter, A., McCarthy, G., Roessler, E., Nobre, A. C., & Spencer, D. D. (1993). Electrophsyiological studies of color processing in human visual cortex. Electroencephalography and Clinical Neurophysiology, 88(5), 343-355.
Anllo-Vento, L., Luck, S. J., & Hillyard, S. A. (1998). Spatio-temporal dynamics of attention to color: evidence from human electrophysiology. Human Brain Mapping, 6(4), 216-238.
Arend, L., & Reeves, A. (1986). Simultaneous color constancy. Journal of the Optical Society of America A, 3, 1743-1751.
Beauchamp, M. S., Haxby, J. V., Jennings, J. E., & DeYoe, E. A. (1999). An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9(3), 257-263.
Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal ofStatistical Software, 31, 1-21.
Bouvier, S. E., & Engel, S. A. (2006). Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cerebral Cortex, 16, 183-191.
Brainard, D. H., & Wandell, B. A. (1992). Asymmetric color matching: How color appearance depends on the illuminant. Journal ofthe Optical Society of America A, 9, 1433-1448.
Brainard, D. H., & Hurlbert, A. C. (2015). Colour vision: Understanding #TheDress. Current Biology, 25, R551-R554.
Brouwer, G. J., & Heeger, D. J. (2009). Decoding and reconstructing color from responses in human visual cortex. Journal ofNeuroscience, 29(44), 13992-14003.
Chetverikov, A., & Ivanchei, I. (2016). Seeing "the dress" in the right light: perceived colors and inferred light sources. Perception, 45(8), 910-930.
Churma, M.E. (1994). Blue shadows: physical, physiological, and psychological causes. Applied Optics, 33, 4719-4722.
Coggan, D. C., Liu, W., Baker, D. H., & Andrews, T. J. (2016). Category-selective patterns of neural response in the ventral visual pathway in the absence of categorical information. NeuroImage, 135, 107-114.
Coia, A. J., Jones, C., Duncan, C. S., & Crognale, M. A. (2014). Physiological correlates of watercolor effect. Journal ofthe Optical Society ofAmerica A, 31(4), A15-A22.
Conway, B. R. (2009). Color vision, cones, and color-coding in the cortex. Neuroscientist, 15(3), 274-290.
Conway, B. R., & Tsao, D. Y. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proceedings ofthe National Academy of Sciences, 106(42), 18034-18039.
Conway, B. R., Chatterjee, S., Field, G. D., Horwitz, G. D., Johnson, E. N., Koida, K.,... Mancuso, K. (2010). Advances in color science: from retina to behavior. Journal ofNeuroscience, 30(45), 14955-14963.
Conway, B. R. (2014). Color signals through dorsal and ventral visual pathways. Visual Neuroscience, 31, 197-209.
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1990). Attentional modulation of eural processing of shape, color, and velocity in humans. Science, 248(4962), 1556-1559.
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal ofNeuroscience, 11(8), 2383-2402.
Crognale, M. A., Duncan, C. S., Shoenhard, H., Peterson, D. J., & Berryhill, M. E. (2013). The locus of color sensation: Cortical color loss and the chromatic visual evoked potential. Journal of Vision, 13(10): 15, 1-11.
Dacey, D. M. (2000). Parallel pathways for spectral coding in primate retina. Annual Review of Neuroscience, 23(1), 743-775.
Dacey, D. M., Crook, J. D., & Packer, O. S. (2014). Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Visual Neuroscience, 31(2), 139-151.
Derrington, AM, Krauskopf, J, & Lennie, P. Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal ofPhysiology. 1984 Dec 1;357(1): 241-65.
Dixon, E. L., & Shapiro, A. G. (2017). Spatial filtering, color constancy, and the color-changing dress. Journal ofVision, 17(3): 7.
Dzhelyova, M., & Rossion, B. (2014). The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimuliation. BMC Neuroscience, 15: 87, 1-12.
D'Zmura, M., & Lennie, P. (1986). Mechanisms of color constancy. JOSA A, 3(10), 1662-1672.
Engel, S., Zhang, X., & Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 388(6637), 68-71.
Forder, L., Bosten, J., He, X., & Franklin, A. (2017). A neural signature of the unique hues. Scientific Reports, 7: 42364, 1-8.
Foster, D. H. (2011). Color constancy. Vision Research, 51(7), 674-700.
Foster, D. H., Craven, B. J., & Sale, E. R. H. (1992). Immediate colour constancy. Opthalmic & Physiological Optics. 12(2), 157-160.
Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision, Nature Reviews Neuroscience, 4, 563-572.
Gegenfurtner, K. R., Bloj, M., & Toscani, M. (2015). The many colours of 'the dress.' Current Biology, 25, R543-R544.
Goddard, E., Mannion, D. J., McDonald, J. S., Solomon, S G., & Clifford, C. W. G. (2011). Color responsiveness argues against a dorsal component of human V4. Journal of Vision, 11(4): 3, 1-21.
Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P. G., & Rossion, B. (2005). Diagnostic Colors Contribute to the Early Stages of Scenes Categorization: Behavioral and Neurophysiological Evidence. Visual Cognition, 12, 878-892.
Granrud, C., Yonas, A., & Opland, E. (1985) Infants' sensitivity to the depth cue of shading. Perception and Psychophysics, 37(5), 415-419.
Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., & Tootell, R. B. H. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1, 235-241.
Hesslinger, V. M., & Carbon, C. C. (2016). #TheDress: The role of illumination information and individual differences in the psychophysics of perceiving white-blue ambiguities. I-perception, 7(2): 2041669516645592, 1-10.
Hurlbert, A. C. (1998). Computational models of color constancy. In V Walsh, & J. Kulikowski (Eds.), Perceptual Constancy: Why Things Look As They Do (pp. 283-322). Cambridge: Cambridge University Press.
Jacques, C., Retter, T.L., & Rossion, B. (2016). A single glance at a face generates larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain. NeuroImage, 137, 21-33.
Jaeger, W., Krastel, H., & Braun, S. (1988). Cerebral achromatopsia (symptoms, course, differential diagnosis and strategy of the study). I. Klinische Monatsblatter fur Augenheilkunde, 193(6), 627-634.
Johnson, E. N., & Mullen, K. T. (2016). Color in the Cortex. In Human Color Vision (pp. 189-217). Springer International Publishing.
Keysers, C., Xiao, D. K., Foldiak, P., & Perrett, D. I. (2001). The speed of sight. Journal ofCognitive Neuroscience, 13(1), 90-101.
Kulikowski, J. J., Walsh, V., McKeefry, D., Butler, S. R., & Carden, D. (1994). The electrophysiological basis of colour processing in macaques with V4 lesions. Behavioral Brain Research, 60, 73-78.
Krauskopf, J., Williams, D. R., & Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22, 1123-1131.
Kuriki, I., Nakamura, S., Sun, P., Ueno, K., & Matsumiya, K. et al. (2011). Decoding color responses in human visual cortex. IEICE Transactions on Fundamentals ofElectronics, Communications, and Computer Sciences, E94. A(2), 473-479.
Lafer-Sousa, R., Hermann, K. L., & Conway, B. R. (2015). Striking individual differences in color perception uncovered by 'the dress' photograph. Current Biology, 25, R545-R546.
Lafer-Sousa, R., Conway, B. R., & Kanwisher, N. G. (2016). Color-biased regions of the ventral visual pathway lie between face-and place-selective regions in humans, as in macaques. Journal of Neuroscience, 36(5), 1682-1697.
Lafer-Sousa, R., & Conway, B. R. (2017). #TheDress: Categorical perception of an ambiguous color image. Journal of Vision, 17(12): 25, 1-30.
Land, E. H., & McCann, J. J. (1971). Lightness and retinex theory. Journal ofthe Optical Society of America, 61(1), 1-11.
Lee, B. B. (2004). Paths to colour in the retina. Clinical and Experimental Optometry, 87(4-5), 239-248.
Liu, J., & Wandell, B. A. (2005). Specializations for chromatic and temporal signals in human visual cortex. Journal ofNeuroscience, 25, 3459-3468.
Lotto, R. B., & Purves, D. (2002). The empirical basis of color perception. Consciousness and Cognition, 11, 609-629.
Luck, S. J. An introduction to the event-related potential technique (2005). Cambridge, MA: MIT Press.
Lueck, C. J., Zeki, S., Friston, K. J., Deiber, M. P., Cope, P., & Cunningham, V. J. et al. (1989). The colour centre in the cerebral cortex of man. Nature, 340, 386-389.
Mahroo, O. A., Williams, K. M., Hossain, I T., Yonova-Doing, E., & Kozareva, D. et al. (2017). Do twins share the same dress code? Quantifying relative genetic and environmental contributions to subjective perceptions of "the dress" in a classical twin study. Journal of Vision, 17(1): 29, 1-7.
McCarthy, G., & Wood, C. C. (1985). Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. Electroencephalography and Clinical Neurophysiology, 62(3), 203-208.
McDermott, K. C., Malkoc, G., Mulligan, J. B., & Webster, M. A. (2010). Adaptation and visual salience. Journal ofvision, 10(13), 17-17.
Meadows, J. C. (1974). Disturbed perception of colours associated with localized cereberal lesions. Brain, 97, 615-632.
Mullen, K. T., Dumoulin, S. O., McMahon, K. L., de Zubicaray, G. I., & Hess, R. F. (2007). Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. European Journal of Neuroscience, 25, 491-502.
Murphey, D. K., Yoshor, D., & Beauchamp, M. S. (2008). Perception matches selectivity in the human anterior color center. Current Biology, 18(3), 216-220.
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The stead-state visual evoked potential in vision research: A review. Journal of Vision, 15(6): 4, 1-46.
Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713-719.
Parkes, L. M., Marsman, J. B., Oxley, D. C., Goulemas, J. Y., & Wuerger, S. M. (2009). Multivoxel fMRI analysis of color tuning in human primary visual cortex. Journal of Vision, 9(1): 1, 1-13.
Pearce, B., Crichton, S., Mackiewicz, M., Finlayson, G.D., & Hurlbert, A. (2014). Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations. PLoS One, 9, e87989.
Poldrack, R. A., Halchenko, Y. O., & Hanson, S. J. (2009). Decoding the large-scale structure of brain function by classifying mental states across individuals. Psychological Science, 20, 1364-1372.
Potter, M.C., Wyble, B., Hagmann, C.E., & McCourt, E.S. (2014). Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, & Psychophysics, 76(2), 270-279.
Rabin, J., Switkes, E., Crognale, M. A., Schneck, M. E., & Adams, A. J. (1994). Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing. Vision Research, 34, 2657-2671.
Rabin, J., Houser, B., Talbert, C., & Patel, R. (2016). Blue-black or white-gold? Early stage processing and the color of 'the dress'. PLOS One, 11(8), e0161090.
Regan, D. (1966). Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalography and Clinical Neurophysiology, 20 (3), 238-248.
Retter, T. L., & Rossion, B. (2016a). Visual adaptation provides objective electrophysiological evidence of facial identity discrimination. Cortex, 80, 35-50.
Retter, T. L., & Rossion, B. (2017). Visual adaptation reveals an objective electrophysiological measure of high-level individual face discrimination. Scientific Reports, 7: 3269, 1-10.
Originals, Roman (2018). #The Dress that broke the internet. Available at: https: //www.romanoriginals.co.uk/thedress [Accessed January 20, 2018].
Rossion, B., Prieto, E. A., Boremanse, A., Kuefner, D., & Van Belle, G. (2012). A steady-state visual evoked potential approach to individual face perception: effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63, 1585-1600.
Rossion, B. (2014a). Understanding individual face discrimination by means of fast periodic visual stimulation. Experimental Brain Research, 232, 1599-1621.
Rossion, B. (2014b). Understanding face perception by means of human electrophysiology. Trends in Cognitive Sciences, 18, 310-318.
Rossion, B., Torfs, K., Jacques, C., & Liu-Shuang, J. (2015). Fast periodic presentation of natural face images reveals a robust face-selective electrophysiological response in the human brain. Journal ofVision, 15(1): 18, 1-18.
Retter, T. L., & Rossion, B. (2016b). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9-28.
Sakai, K., Watanabe, E., Onodera, Y., Uchida, I., & Kato, H. et al. (1995). Functional mapping of the human colour centre with echo-planar magnetic resonance imaging. Proceedingsofthe RoyalSociety ofLondon B, 261, 89-98.
Sato, K., Kanazawa, S., & Yamaguchi, M. K. (2016). Infants' discrimination of shapes from shading and cast shadows. Attention, Perception and Psychophysics, 78(5), 1453-1459.
Schalk, G., Kapeller, C., Guger, C., Ogawa, H., & Hiroshima, S. et al. (2017). Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proceedings ofthe National Academy of Sciences, 114(46), 12285-12290
Schlaffke, L. et al. (2015). The brain's dress code: How The Dress allows to decode the neuronal pathway of an optical illusion, Cortex, 73, 271-275.
Shapley, R., & Hawken, M. J. (2011). Color in the cortex: single-and double-opponent cells. Vision Research, 51(7), 701-717.
Shevell, S. K., & Kingdom, F. A. (2008). Color in complex scenes. Annual Review ofPsychology, 59, 143-166.
Smithson, H. E. (2005). Sensory, computational and cognitive components of human colour constancy. Philosophical Transactions ofthe Royal Society of London B, 360, 1329-1346.
Solomon, S. G., & Lennie, P. (2007) The machinery of colour vision. Nature Reviews Neuroscience, 8, 276-286.
Srinivasan, R., Russell, D. P., Edelman, G. M., & Tononi, G. (1999). Increased synchronization of neuromagnetic responses during conscious perception. Journal ofNeuroscience, 19, 5435-5448.
Swiked (2015). guys-please-help-me-is-this-dress-white-and. Available at: http://swiked.tumblr.com/post/112073818575/ guys-please-help-me-is-this-dress-white-and [Accessed January 20, 2018].
Tailby, C., Solomon, S. G., & Lennie, P. (2008). Functional asymmetries in visual pathways carrying S-cone signals in macaque. Journal ofNeuroscience, 28(15), 4078-4087.
Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J.-R. (2009). Unconscious effects of language-specific terminology on preattentive color perception. Proceedings ofthe National Academy of Sciences, 106(11), 4567-4570.
Toscani, M., Gegenfurtner, K. R., & Doerschner, K. (2017). Differences in illumination estimation in #thedress. Journal of Vision, 17 (1): 22, 1-14
Tyler, C. W., & Kaitz, M. (1977). Movement adaptation in the visual evoked response. Experimental Brain Research, 27, 209-209.
van den Brink, R. (2014). circ_htest. m (Version 1.0.0.0) [Source code]. Available from https: //www.mathworks.com/matlabcentral/fileexchange/ 46349-circ_htest-m
Vemuri, K., Bisla, K., Mulpuru, S., & Varadharajan, S. (2016). Do normal pupil diameter differences in the population underlie the color selection of #the dress?. J Opt Soc Am, 1, 37-42.
Verrey, D. (1888). Hemiachromatopsie droite absolute. Archives de Ophthalimologie (Paris), 8, 289300.
Wallisch, P. (2017). Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: "The dress". Journal ofVision, 17(4): 5, 1-14.
Walsh, V. (1999). How does the cortex construct color? Proceedings ofthe National Academy ofSciences, 96(24), 13594-13596.
Wandell, B. A., Baseler, H., Poirson, A. B., Boynton, G. M., & Engel, S. E. (2000). Computational neuroimaging: Color tuning in two human cortical areas measured using fMRI. Eds. K. Gegenfurtner, & L. T. Sharpe, Cambridge University Press (Cambridge): Colour vision: From genes to perception (pp. 269-282).
Wang, Q., Richters, D.P., &Eskew, R.T., Jr. (2014). Noise masking of S-cone increments and decrements. Journal of Vision, 14(13): 8, 1-17.
Winkler, A., Spillmann, L., Werner, J. S., & Webster, M. A. (2015). Asymmetries in blue-yellow color perception and in the color of "the dress". Current Biology, 25(13), R547-R548.
Witzel, C. (2015). The Dress: Why do different observers see extremely different colours in the same photo?. Retrieved August 2015, from http://lpp.psycho.univ-paris5.fr/feel/?page_id=929.
Witzel, C., Racey, C., & O'Regan, K. (2017). The most reasonable explanation of "the dress": Implicit assumptions about illumination. Journal ofVision, 17(2): 1, 1-19.
Wool, L. E., Komban, S. J., Kremkow, J., Jansen, M., & Li, X. et al. (2015). Salience of unique hues and implications for color theory. Journal ofVision, 15(2): 10, 1-11.
Zeki, S. (1990). A century of cerebral achromatopsia. Brain, 113, 1721-1777.
Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. J. (1991). A direct demonstration of functional specialization in human visual-cortex. Journal ofNeuroscience, 11, 641-649.
Zhu, W., Drewes, J., & Gegenfurtner, K. R. (2013). Animal detection in natural images: effects of color and image database. Public Library ofScience One, 8(10): e75816, 1-14.