Article (Périodiques scientifiques)
Joint Forecasting and Interpolation of Time-Varying Graph Signals Using Deep Learning
Lewenfus, Gabriela; ALVES MARTINS, Wallace; CHATZINOTAS, Symeon et al.
2020In IEEE Transactions on Signal and Information Processing over Networks
Peer reviewed
 

Documents


Texte intégral
Lewenfus-TSPIN-2020.pdf
Postprint Auteur (5.14 MB)
Télécharger

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Multivariate time series; forecasting and interpolation; deep learning; recurrent neural networks (RNNs); graph signal processing (GSP)
Résumé :
[en] We tackle the problem of forecasting network-signal snapshots using past signal measurements acquired by a subset of network nodes. This task can be seen as a combination of multivariate time-series forecasting (temporal prediction) and graph signal interpolation (spatial prediction). This is a fundamental problem for many applications wherein deploying a high granularity network is impractical. Our solution combines recurrent neural networks with frequency-analysis tools from graph signal processing, and assumes that data is sufficiently smooth with respect to the underlying graph. The proposed learning model outperforms state-of-the-art deep learning techniques, especially when predictions are made using a small subset of network nodes, considering two distinct real world datasets: temperatures in the US and speed flow in Seattle. The results also indicate that our method can handle noisy signals and missing data, making it suitable to many practical applications.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Lewenfus, Gabriela;  Federal University of Rio de Janeiro - UFRJ
ALVES MARTINS, Wallace ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Joint Forecasting and Interpolation of Time-Varying Graph Signals Using Deep Learning
Date de publication/diffusion :
2020
Titre du périodique :
IEEE Transactions on Signal and Information Processing over Networks
ISSN :
2373-776X
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Peer reviewed :
Peer reviewed
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 02 décembre 2020

Statistiques


Nombre de vues
156 (dont 5 Unilu)
Nombre de téléchargements
179 (dont 1 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
8
citations OpenAlex
 
9
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu