Fault diagnosis; Causal computations; Fuel Cell Systems
Abstract :
[en] In this work, a diagnosis system is developed and applied to a fuel cell stack system. The paper shows the significance of structural models to solve diagnosis issues in large scale systems. The diagnosis system based on residual generation by means of the computation of causal MSO sets (Minimal Structural Overdetermined) is capable of detecting and isolating faults in the fuel cell system.
Disciplines :
Computer science
Identifiers :
UNILU:UL-CONFERENCE-2012-279
Author, co-author :
Rosich, Albert ; Universitat Politècnica de Catalunya > ESAII - SAC
Nejjari, Fatiha; Universitat Politècnica de Catalunya > ESAII - SAC
Sarrate, Ramon; Universitat Politècnica de Catalunya > ESAII - SAC
Language :
English
Title :
Fuel Cell System Diagnosis based on a Causal Structural Model
Publication date :
2009
Event name :
7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process, Safeprocess’09
Event place :
Barcelona, Spain
Event date :
from 30-06-2009 to 03-07-2009
Audience :
International
Main work title :
Fault Detection, Supervision and Safety of Technical Processes
ISBN/EAN :
978-3-902661-46-3
Pages :
534-539
Peer reviewed :
Peer reviewed
Commentary :
7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process, Safeprocess’09
M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant Control. Springer, 2nd edition, 2006.
J. Chen and R. Patton. Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Boston, 1999.
A. L. Dulmage and N. S. Mendelsohn. Covering of bipartite graph. Canada J. Math, 10:527-534, 1958.
D. Düştegör, E. Frisk, V. Cocquempot, Mattias Krysander, and Marcel Staroswiecki. Structural analysis of fault isolability in the DAMADICS benchmark. Contr. Eng. Pract., 14:597-608, 2006.
M. Krysander. Design and Analysis of Diagnosis Systems Using Structural Analysis. PhD thesis, Linköping Univ., Linköping, Sweden, June 2006.
M. Krysander and E. Frisk. Sensor placement for fault diagnosis. IEEE Trans. Syst., Man, Cybern. A, 38(6): 1398-1410, 2008.
M. Krysander, J. Åslund, and M. Nyberg. An efficient algorithm for finding minimal over-constrained subsystems for model-based diagnosis. IEEE Trans. Syst., Man, Cybern. A, 38(1), 2008.
K. Murota. Matrices and Matroids for Systems Analysis. Springer, 2000.
S. Ploix, A. A. Yassine, and J. M. Flaus. An improved algorithm for the design of testable subsystems. Proc. of 17th IFAC World Congress, Seoul, Korea, 2008.
J. T. Pukrushpan. Modeling and Control of Fuel Cell Systems and Fuel Processors. PhD thesis, Univ. of Michigan, Ann Arbor, Michigan, 2003.
J. T. Pukrushpan, H. P., and A. G. Stefanopoulou. Analysis for automotive fuel cell systems. Transactions of the ASME, 126:14-25, 2004.
B. Pulido and C. A. Gonzalez. Possible conflicts: a compilation technique for consistency-based diagnosis. IEEE Trans. Syst., Man, Cybern. B, 34(5):2192-2206, October 2004.
A. Rosich, R. Sarrate, and F. Nejjari. Fuel cell system benchmark. Technical report, Automatic Control Department, 2008. URL http://websac.upc.es.
A. Rosich, R. Sarrate, and F. Nejjari. Sensor placement for fault diagnosis based on causal computations. In Proceedings of IFAC Safeprocess'09, Barcelona, Spain, July 1-3, 2009.
C. Svärd and M. Nyberg. A mixed causality approach to residual generation utilizing equation system solvers and differential-algebraic equation theory. 19th International Workshop on Principles of Diagnosis (DX-08), Blue Mountains, Australia, 2008.
L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis based on component supported analytical redundancy relations. IEEE Trans. Syst., Man, Cybern. A, 36(6):1146-1160, 2006. (Pubitemid 44680561)