Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Space-Time Triplet Loss Network for Dynamic 3D Face Verification
KACEM, Anis; BEN ABDESSALEM, Hamza; CHERENKOVA, Kseniya et al.
2020Workshop on 3D Human Understanding, ICPR 2020
 

Documents


Texte intégral
ICPRW-5.pdf
Postprint Éditeur (919.83 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Dynamic 3D Face Recognition; ConvolutionalNeural Networks; Triplet Loss
Résumé :
[en] In this paper, we propose a new approach for 3D dynamic face verification exploiting 3D facial deformations. First, 3D faces are encoded into low-dimensional representations describing the local deformations of the faces with respect to a mean face. Second, the encoded versions of the 3D faces along a sequence are stacked into 2D arrays for temporal modeling. The resulting 2D arrays are then fed to a triplet loss network for dynamic sequence embedding. Finally, the outputs of the triplet loss network are compared using cosine similarity measure for face verification. By projecting the feature maps of the triplet loss network into attention maps on the 3D face sequences, we are able to detect the space-time patterns that contribute most to the pairwise similarity between differ-ent 3D facial expressions of the same person. The evaluation is conducted on the publicly available BU4D dataset which contains dynamic 3D face sequences. Obtained results are promising with respect to baseline methods.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Computer Vision Imaging & Machine Intelligence (CVI²)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
BEN ABDESSALEM, Hamza ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHERENKOVA, Kseniya ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Space-Time Triplet Loss Network for Dynamic 3D Face Verification
Date de publication/diffusion :
2020
Nom de la manifestation :
Workshop on 3D Human Understanding, ICPR 2020
Date de la manifestation :
15-01-2020
Disponible sur ORBilu :
depuis le 11 novembre 2020

Statistiques


Nombre de vues
290 (dont 46 Unilu)
Nombre de téléchargements
4 (dont 4 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu