Article (Périodiques scientifiques)
Evolutionary algorithms deceive humans and machines at image classification: An extended proof of concept on two scenarios
CHITIC, Ioana Raluca; LEPREVOST, Franck; Bernard, Nicolas
2020In Journal of Information and Telecommunication
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
A_proof_of_concept_on_two_scenarii_to_deceive_humans_and_machines_at_image_classification_with_evolutionary_algorithms.pdf
Postprint Éditeur (2.06 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Neural Networks; Evolutionary Algorithms; Adversarial Attacks
Résumé :
[en] The range of applications of Neural Networks encompasses image classification. However, Neural Networks are vulnerable to attacks, and may misclassify adversarial images, leading to potentially disastrous consequences. Pursuing some of our previous work, we provide an extended proof of concept of a black-box, targeted, non-parametric attack using evolutionary algorithms to fool both Neural Networks and humans at the task of image classification. Our feasibility study is performed on VGG-16 trained on CIFAR-10. For any category cA of CIFAR-10, one chooses an image A classified by VGG-16 as belonging to cA. From there, two scenarios are addressed. In the first scenario, a target category ct≠cA is fixed a priori. We construct an evolutionary algorithm that evolves A to a modified image that VGG-16 classifies as belonging to ct. In the second scenario, we construct another evolutionary algorithm that evolves A to a modified image that VGG-16 is unable to classify. In both scenarios, the obtained adversarial images remain so close to the original one that a human would likely classify them as still belonging to cA.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CHITIC, Ioana Raluca ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
LEPREVOST, Franck ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Bernard, Nicolas;  independent
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Evolutionary algorithms deceive humans and machines at image classification: An extended proof of concept on two scenarios
Date de publication/diffusion :
10 octobre 2020
Titre du périodique :
Journal of Information and Telecommunication
ISSN :
2475-1839
eISSN :
2475-1847
Maison d'édition :
Taylor & Francis Group, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 10 novembre 2020

Statistiques


Nombre de vues
216 (dont 18 Unilu)
Nombre de téléchargements
112 (dont 6 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
0
OpenCitations
 
3
citations OpenAlex
 
9
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu