L. M. Abramov, On the entropy of a flow (Russian), Dokl. Akad. Nauk SSSR 128 (1959), 873–875. MR0113985
H. Abels, G. A. Margulis, and G. A. Soı̆fer, Semigroups containing proximal linear maps, Israel J. Math. 91 (1995), no. 1-3, 1–30, DOI 10.1007/BF02761637. MR1348303
H. Abels, G. A. Margulis, and G. A. Soifer, On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, J. Differential Geom. 60 (2002), no. 2, 315–344. MR1938115
Herbert Abels, Gregory Margulis, and Gregory Soifer, The Auslander conjecture for dimension less than 7, Preprint, arXiv:1211.2525, 2012.
Louis Auslander, The structure of complete locally affine manifolds, Topology 3 (1964), no. suppl, suppl. 1, 131–139, DOI 10.1016/0040-9383(64)90012-6. MR161255
Louis Auslander, An account of the theory of crystallographic groups, Proc. Amer. Math. Soc. 16 (1965), 1230–1236, DOI 10.2307/2035904. MR185012
Martin Bridgeman, Richard Canary, François Labourie, and Andres Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015), no. 4, 1089–1179, DOI 10.1007/s00039-015-0333-8. MR3385630
Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume (German), Math. Ann. 70 (1911), no. 3, 297–336, DOI 10.1007/BF01564500. MR1511623
Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Ab-handlung.) Die Gruppen mit einem endlichen Fundamentalbereich (German), Math.
Ann. 72 (1912), no. 3, 400–412, DOI 10.1007/BF01456724. MR1511704 Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162, DOI 10.1007/BF01393996. MR931208
Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1–30, DOI 10.2307/2373590. MR298700
Jairo Bochi, Rafael Potrie, and Andrés Sambarino, Anosov representations and dominated splittings, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 11, 3343–3414, DOI 10.4171/JEMS/905. MR4012341
Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202, DOI 10.1007/BF01389848. MR380889
Rufus Bowen and Caroline Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 153–170. MR556585
Martin J. Bridgeman and Edward C. Taylor, An extension of the Weil-Petersson metric to quasi-Fuchsian space, Math. Ann. 341 (2008), no. 4, 927–943, DOI 10.1007/s00208-008-0218-3. MR2407332
Marc Burger, Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank 2, Internat. Math. Res. Notices 7 (1993), 217–225, DOI 10.1155/S1073792893000236. MR1230298
Peter Buser, A geometric proof of Bieberbach’s theorems on crystallographic groups, Enseign. Math. (2) 31 (1985), no. 1-2, 137–145. MR798909
Virginie Charette and Todd Drumm, Strong marked isospectrality of affine Lorentzian groups, J. Differential Geom. 66 (2004), no. 3, 437–452. MR2106472
Virginie Charette, Todd A. Drumm, and William M. Goldman, Proper affine deformation spaces of two-generator Fuchsian groups, Preprint, arXiv:1501.04535, 2015.
Christophe Champetier, Petite simplification dans les groupes hyperboliques (French, with English and French summaries), Ann. Fac. Sci. Toulouse Math. (6) 3 (1994), no. 2, 161–221. MR1283206
Todd A. Drumm and William M. Goldman, Isospectrality of flat Lorentz 3-manifolds, J. Differential Geom. 58 (2001), no. 3, 457–465. MR1906782
Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Margulis spacetimes via the arc complex, Invent. Math. 204 (2016), no. 1, 133–193, DOI 10.1007/s00222-015-0610-z. MR3480555
Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Proper affine actions for right-angled Coxeter groups, Duke Math. J. 169 (2020), no. 12, 2231–2280, DOI 10.1215/00127094-2019-0084. MR4139042
Todd A. Drumm, Fundamental polyhedra for Margulis space-times, Topology 31 (1992), no. 4, 677–683, DOI 10.1016/0040-9383(92)90001-X. MR1191372
Todd A. Drumm, Linear holonomy of Margulis space-times, J. Differential Geom. 38 (1993), no. 3, 679–690. MR1243791
David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1–49, DOI 10.1016/0001-8708(83)90053-1. MR689763
Herrn Frobenius, Ueber lineare Substitutionen und bilineare Formen, J. Reine Angew. Math. 84 (1878), 1–63, DOI 10.1515/crelle-1878-18788403. MR1581640
G. Frobenius, Über die Unzerlegbaren Diskreten Bewegungsgruppen, Preussische Akademie der Wissenschaften Berlin: Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin, Reichsdr., 1911.
Sourav Ghosh, The pressure metric on the Margulis multiverse, Geom. Dedicata 193 (2018), 1–30, DOI 10.1007/s10711-017-0260-y. MR3770278
William M. Goldman, François Labourie, and Gregory Margulis, Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math. (2) 170 (2009), no. 3, 1051–1083, DOI 10.4007/annals.2009.170.1051. MR2600870
M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263, DOI 10.1007/978-1-4613-9586-7 3. MR919829
Sourav Ghosh and Nicolaus Treib, Affine Anosov representations and proper actions, Preprint, arXiv:1711.09712, 2017.
Olivier Guichard and Anna Wienhard, Topological invariants of Anosov representations, J. Topol. 3 (2010), no. 3, 578–642, DOI 10.1112/jtopol/jtq018. MR2684514
Olivier Guichard and Anna Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012), no. 2, 357–438, DOI 10.1007/s00222-012-0382-7. MR2981818
Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR2978290
Dennis Johnson and John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984), Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48–106, DOI 10.1007/978-1-4899-6664-3 3. MR900823
Inkang Kim, Affine action and Margulis invariant, J. Funct. Anal. 219 (2005), no. 1, 205–225, DOI 10.1016/j.jfa.2004.04.011. MR2108366
A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), no. 3, 581–597, DOI 10.1007/BF01393838. MR1022308
Michael Kapovich, Bernhard Leeb, and Joan Porti, Morse actions of discrete groups on symmetric space, Preprint, arXiv:1403.7671, 2014.
Michael Kapovich, Bernhard Leeb, and Joan Porti, Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017), no. 4, 808–898, DOI 10.1007/s40879-017-0192-y. MR3736790
Michael Kapovich, Bernhard Leeb, and Joan Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018), no. 1, 157–234, DOI 10.2140/gt.2018.22.157. MR3720343
Gerhard Knieper, Volume growth, entropy and the geodesic stretch, Math. Res. Lett. 2 (1995), no. 1, 39–58, DOI 10.4310/MRL.1995.v2.n1.a5. MR1312976
François Labourie, Fuchsian affine actions of surface groups, J. Differential Geom. 59 (2001), no. 1, 15–31. MR1909247
François Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), no. 1, 51–114, DOI 10.1007/s00222-005-0487-3. MR2221137
A. N. Livšic, Cohomology of dynamical systems (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1296–1320. MR0334287
Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117, DOI 10.1090/memo/0336. MR818915
G. A. Margulis, Free completely discontinuous groups of affine transformations (Russian), Dokl. Akad. Nauk SSSR 272 (1983), no. 4, 785–788. MR722330
G. A. Margulis, Complete affine locally flat manifolds with a free fundamental group (Russian, with English summary), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 190–205. Automorphic functions and number theory, II. MR741860
Curtis T. McMullen, Thermodynamics, dimension and the Weil-Petersson metric, Invent. Math. 173 (2008), no. 2, 365–425, DOI 10.1007/s00222-008-0121-2. MR2415311
John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187, DOI 10.1016/0001-8708(77)90004-4. MR454886
Igor Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005), 403–482, DOI 10.2140/gt.2005.9.403. MR2140987
Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR719023
Mark Pollicott, Symbolic dynamics for Smale flows, Amer. J. Math. 109 (1987), no. 1, 183–200, DOI 10.2307/2374558. MR878205
William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics (English, with French summary), Astérisque 187-188 (1990), 268. MR1085356
Jean-François Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur (French, with French summary), Comment. Math. Helv. 77 (2002), no. 3, 563–608, DOI 10.1007/s00014-002-8352-0. MR1933790
M. S. Raghunathan, Discrete subgroups of Lie groups, Math. Student Special Centenary Volume (2007), 59–70 (2008). MR2527560
David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics, DOI 10.1017/CBO9780511617546. MR2129258
A. Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 986–1010, DOI 10.1017/etds.2012.170. MR3199802
Andrés Sambarino, Quantitative properties of convex representations, Comment. Math. Helv. 89 (2014), no. 2, 443–488, DOI 10.4171/CMH/324. MR3229035
Ilia Smilga, Proper affine actions on semisimple Lie algebras (English, with English and French summaries), Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 785–831. MR3477891
Ilia Smilga, Proper affine actions in non-swinging representations, Groups Geom. Dyn. 12 (2018), no. 2, 449–528, DOI 10.4171/GGD/447. MR3813201
Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR648108