Article (Périodiques scientifiques)
Efficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks
NGUYEN, van Dinh; SHARMA, Shree Krishna; VU, Thang Xuan et al.
2021In IEEE Internet of Things Journal, 8 (5), p. 3394 - 3409
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
FL for Wireless IoT Network_Final version.pdf
Postprint Auteur (2.11 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Energy-efficiency; IoT; federated learning
Résumé :
[en] Federated learning (FL) allows multiple edge computing nodes to jointly build a shared learning model without having to transfer their raw data to a centralized server, thus reducing communication overhead. However, FL still faces a number of challenges such as non-iid distributed data and heterogeneity of user equipments (UEs). Enabling a large number of UEs to join the training process in every round raises a potential issue of the heavy global communication burden. To address these issues, we generalize the current state-of-the-art Federated Averaging (FedAvg) by adding a weight-based proximal term to the local loss function. The proposed FL algorithm runs stochastic gradient descent in parallel on a sampled subset of the total UEs with replacement during each global round. We provide a convergence upper bound characterizing the trade-off between convergence rate and global rounds, showing that a small number of active UEs per round still guarantees convergence. Next, we employ the proposed FL algorithm in wireless Internet-of-Things (IoT) networks to minimize either total energy consumption or completion time of FL, where a simple yet efficient path-following algorithm is developed for its solutions. Finally, numerical results on unbalanced datasets are provided to demonstrate the performance improvement and robustness on the convergence rate of the proposed FL algorithm over FedAvg. They also reveal that the proposed algorithm requires much less training time and energy consumption than the FL algorithm with full user participation. These observations advocate the proposed FL algorithm for a paradigm shift in bandwidth- constrained learning wireless IoT networks.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
NGUYEN, van Dinh ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
SHARMA, Shree Krishna ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Efficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks
Date de publication/diffusion :
01 mars 2021
Titre du périodique :
IEEE Internet of Things Journal
eISSN :
2327-4662
Maison d'édition :
Institute of Electrical and Electronics Engineers
Volume/Tome :
8
Fascicule/Saison :
5
Pagination :
3394 - 3409
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Intitulé du projet de recherche :
the ERC project AGNOSTIC
Organisme subsidiant :
CER - Conseil Européen de la Recherche
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 02 novembre 2020

Statistiques


Nombre de vues
669 (dont 78 Unilu)
Nombre de téléchargements
475 (dont 71 Unilu)

citations Scopus®
 
125
citations Scopus®
sans auto-citations
118
citations OpenAlex
 
124
citations WoS
 
102

Bibliographie


Publications similaires



Contacter ORBilu