Article (Périodiques scientifiques)
Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets
Otberdout, Naima; Daoudi, Mohamed; KACEM, Anis et al.
2020In IEEE Transactions on Pattern Analysis and Machine Intelligence
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1907.10087.pdf
Postprint Auteur (11.94 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Facial expression generation; Conditional manifold-valued Wasserstein Generative Adversarial Networks; Facial Landmarks
Résumé :
[en] In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, we learn the distribution of facial expression dynamics of different classes, from which we synthesize new facial expression motions. The resulting motions can be transformed to sequences of landmarks and then to images sequences by editing the texture information using another conditional Generative Adversarial Network. To the best of our knowledge, this is the first work that explores manifold-valued representations with GAN to address the problem of dynamic facial expression generation. We evaluate our proposed approach both quantitatively and qualitatively on two public datasets; Oulu-CASIA and MUG Facial Expression. Our experimental results demonstrate the effectiveness of our approach in generating realistic videos with continuous motion, realistic appearance and identity preservation. We also show the efficiency of our framework for dynamic facial expression generation, dynamic facial expression transfer and data augmentation for training improved emotion recognition models.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Computer Vision Imaging & Machine Intelligence (CVI²)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Otberdout, Naima;  Mohammed V University in Rabat, Faculty of Sciences, Rabat, Morocco
Daoudi, Mohamed;  IMT Lille-Douai, Univer-sity of Lille, CNRS, UMR 9189 CRIStAL, Lille, France
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Ballihi, Lahoucine;  Mohammed V University in Rabat, Faculty of Sciences, Rabat, Morocco
Berretti, Stefano;  Department of Information Engineering, Universityof Florence, Florence, Italy
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets
Date de publication/diffusion :
avril 2020
Titre du périodique :
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN :
0162-8828
Maison d'édition :
Institute of Electrical and Electronics Engineers, Etats-Unis
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 28 octobre 2020

Statistiques


Nombre de vues
192 (dont 15 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
48
citations Scopus®
sans auto-citations
45
citations OpenAlex
 
62
citations WoS
 
47

Bibliographie


Publications similaires



Contacter ORBilu