pile punching; field measurement; smoothed particle hydrodynamics; finite element method; lateral displacement
Résumé :
[en] Pile punching (or driving) affects the surrounding area where piles and adjacent piles can be displaced out of their original positions, due to horizontal loads, thereby leading to hazardous outcomes. This paper presents a three-dimensional (3D) coupled Smoothed Particle Hydrodynamics and Finite Element Method (SPH-FEM) model, which was established to investigate pile punching and its impact on adjacent piles subjected to lateral loads. This approach handles the large distortions by avoiding mesh tangling and remeshing, contributing greatly high computational efficiency. The SPH-FEM model was validated against field measurements. The results of this study indicated that the soil type in which piles were embedded affected the interaction between piles during the pile punching. A comprehensive parametric study was carried out to evaluate the impact of soil properties on the displacement of piles due to the punching of an adjacent pile. It was found that the interaction between piles was comparatively weak when the piles were driven in stiff clays; while the pile-soil interactions were much more significant in sandy soils and soft clays.
Disciplines :
Ingénierie civile
Identifiants :
eid=2-s2.0-84894048696
Auteur, co-auteur :
JAYASINGHE, Laddu Bhagya ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
WALDMANN, Daniele ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Shang, Junlong; Nanyang Centre for Underground Space, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Impact of Pile Punching on Adjacent Piles: Insights from a 3D Coupled SPH-FEM Analysis
Date de publication/diffusion :
21 février 2020
Titre du périodique :
Applied Mechanics
eISSN :
2673-3161
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Suisse