Article (Périodiques scientifiques)
Active Content Popularity Learning and Caching Optimization with Hit Ratio Guarantees
BOMMARAVENI, Srikanth; VU, Thang Xuan; CHATZINOTAS, Symeon et al.
2020In IEEE Access, 8, p. 11
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
09159587.pdf
Postprint Éditeur (1.34 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Edge caching; Active learning; Matrix completion
Résumé :
[en] Edge caching is an effective solution to reduce delivery latency and network congestion by bringing contents close to end-users. A deep understanding of content popularity and the principles underlying the content request sequence are required to effectively utilize the cache. Most existing works design caching policies based on global content requests with very limited consideration of individual content requests which reflect personal preferences. To enable the optimal caching strategy, in this paper, we propose an Active learning (AL) approach to learn the content popularities and design an accurate content request prediction model. We model the content requests from user terminals as a demand matrix and then employ AL-based query-by-committee (QBC) matrix completion to predict future missing requests. The main principle of QBC is to query the most informative missing entries of the demand matrix. Based on the prediction provided by the QBC, we propose an adaptive optimization caching framework to learn popularities as fast as possible while guaranteeing an operational cache hit ratio requirement. The proposed framework is model-free, thus does not require any statistical knowledge about the underlying traffic demands. We consider both the fixed and time-varying nature of content popularities. The effectiveness of the proposed learning caching policies over the existing methods is demonstrated in terms of root mean square error, cache hit ratio, and cache size on a simulated dataset.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
BOMMARAVENI, Srikanth ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Active Content Popularity Learning and Caching Optimization with Hit Ratio Guarantees
Date de publication/diffusion :
27 août 2020
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
IEEE
Volume/Tome :
8
Pagination :
11
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR11691338 - Proactive Edge Caching For Content Delivery Networks Powered By Hybrid Satellite/Terrestrial Backhauling, 2017 (01/07/2018-31/12/2021) - Bjorn Ottersten
Intitulé du projet de recherche :
FNR CORE ProCAST
Organisme subsidiant :
National Research Fund, Luxembourg
Disponible sur ORBilu :
depuis le 28 août 2020

Statistiques


Nombre de vues
368 (dont 37 Unilu)
Nombre de téléchargements
142 (dont 18 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
16
citations OpenAlex
 
20
citations WoS
 
14

Bibliographie


Publications similaires



Contacter ORBilu