Unpublished conference/Abstract (Scientific congresses, symposiums and conference proceedings)
Decomposition schemes for symmetric n-ary bands
Devillet, Jimmy; Mathonet, Pierre
20201st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020)
 

Files


Full Text
proceedings_ALGOS2020.pdf
Publisher postprint (3.05 MB)
Download
Full Text Parts
Contribution_DevilletMathonet.pdf
Author preprint (338.34 kB)
Download
Annexes
Presentation.pdf
Publisher postprint (270.42 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Semigroup; idempotency; semilattice decomposition; reducibility
Abstract :
[en] We extend the classical (strong) semilattice decomposition scheme of certain classes of semigroups to the class of idempotent symmetric n-ary semigroups (i.e. symmetric n-ary bands) where n \geq 2 is an integer. More precisely, we show that these semigroups are exactly the strong n-ary semilattices of n-ary extensions of Abelian groups whose exponents divide n-1. We then use this main result to obtain necessary and sufficient conditions for a symmetric n-ary band to be reducible to a semigroup.
Disciplines :
Computer science
Mathematics
Author, co-author :
Devillet, Jimmy ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Mathonet, Pierre
External co-authors :
yes
Language :
English
Title :
Decomposition schemes for symmetric n-ary bands
Publication date :
27 August 2020
Event name :
1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020)
Event organizer :
LORIA (Université de Lorraine, CNRS, Inria Nancy G.E.)
Event place :
Nancy, France
Event date :
from 26-08-2020 to 28-08-2020
Audience :
International
Focus Area :
Computational Sciences
FnR Project :
FNR10949314 - Geometric And Stochastic Methods In Mathematics And Applications, 2015 (01/10/2016-31/03/2023) - Gabor Wiese
Funders :
FNR - Fonds National de la Recherche [LU]
Available on ORBilu :
since 26 August 2020

Statistics


Number of views
142 (2 by Unilu)
Number of downloads
514 (6 by Unilu)

Bibliography


Similar publications



Contact ORBilu