Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Testing informed SIR based epidemiological model for COVID-19 in Luxembourg
SAUTER, Thomas; PIRES PACHECO, Maria Irene
2020
 

Documents


Texte intégral
MEDRXIV-2020-159046v1-Sauter.pdf
Postprint Éditeur (848.29 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] The interpretation of the number of COVID-19 cases and deaths in a country or region is strongly dependent on the number of performed tests. We developed a novel SIR based epidemiological model (SIVRT) which allows the country-specific integration of testing information and other available data. The model thereby enables a dynamic inspection of the pandemic and allows estimating key figures, like the number of overall detected and undetected COVID-19 cases and the infection fatality rate. As proof of concept, the novel SIVRT model was used to simulate the first phase of the pandemic in Luxembourg. An overall number of infections of 13.000 and an infection fatality rate of 1,3 was estimated, which is in concordance with data from population-wide testing. Furthermore based on the data as of end of May 2020 and assuming a partial deconfinement, an increase of cases is predicted from mid of July 2020 on. This is consistent with the current observed rise and shows the predictive potential of the novel SIVRT model.
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SAUTER, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
PIRES PACHECO, Maria Irene ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Langue du document :
Anglais
Titre :
Testing informed SIR based epidemiological model for COVID-19 in Luxembourg
Date de publication/diffusion :
25 juillet 2020
Maison d'édition :
Cold Spring Harbor Laboratory Press
Focus Area :
Systems Biomedicine
Disponible sur ORBilu :
depuis le 03 août 2020

Statistiques


Nombre de vues
245 (dont 15 Unilu)
Nombre de téléchargements
84 (dont 4 Unilu)

OpenCitations
 
1
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu