Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Leveraging Natural-language Requirements for Deriving Better Acceptance Criteria from Models
VEIZAGA CAMPERO, Alvaro Mario; ALFEREZ, Mauricio; TORRE, Damiano et al.
2020In Proceedings of 23rd ACM / IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS)
Peer reviewed
 

Documents


Texte intégral
Veizaga_MODELS_2020.pdf
Postprint Auteur (962.92 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Requirements Validation and Verification; Acceptance Testing; Acceptance Criteria; UML; Controlled Natural Language; Gherkin
Résumé :
[en] In many software and systems development projects, analysts specify requirements using a combination of modeling and natural language (NL). In such situations, systematic acceptance testing poses a challenge because defining the acceptance criteria (AC) to be met by the system under test has to account not only for the information in the (requirements) model but also that in the NL requirements. In other words, neither models nor NL requirements per se provide a complete picture of the information content relevant to AC. Our work in this paper is prompted by the observation that a reconciliation of the information content in NL requirements and models is necessary for obtaining precise AC. We perform such reconciliation by devising an approach that automatically extracts AC-related information from NL requirements and helps modelers enrich their model with the extracted information. An existing AC derivation technique is then applied to the model that has now been enriched by the information extracted from NL requirements. Using a real case study from the financial domain, we evaluate the usefulness of the AC-related model enrichments recommended by our approach. Our evaluation results are very promising: Over our case study system, a group of five domain experts found 89% of the recommended enrichments relevant to AC and yet absent from the original model (precision of 89%). Furthermore, the experts could not pinpoint any additional information in the NL requirements which was relevant to AC but which had not already been brought to their attention by our approach (recall of 100%)
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VEIZAGA CAMPERO, Alvaro Mario ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
ALFEREZ, Mauricio ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
TORRE, Damiano ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Ottawa, Canada > School of Electrical Engineering and Computer Science
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Ottawa, Canada > School of Electrical Engineering and Computer Science
Pitskhelauri, Elene;  Clearstream Services SA, Luxembourg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Leveraging Natural-language Requirements for Deriving Better Acceptance Criteria from Models
Date de publication/diffusion :
octobre 2020
Nom de la manifestation :
23rd ACM / IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS)
Lieu de la manifestation :
Montreal, Canada
Date de la manifestation :
19-10-2020 to 23-10-2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of 23rd ACM / IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS)
Pagination :
218-228
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR13234469 - Improved Model-based Requirements For Financial Applications, 2018 (01/01/2019-31/12/2021) - Lionel Briand
Intitulé du projet de recherche :
Improved Model-based Requirements for Financial Applications (IMoReF)
Organisme subsidiant :
Clearstream Services SA
FNR - Fonds National de la Recherche
NSERC of Canada under the Discovery, Discovery Accelerator and CRC programs
Disponible sur ORBilu :
depuis le 27 juillet 2020

Statistiques


Nombre de vues
515 (dont 82 Unilu)
Nombre de téléchargements
425 (dont 44 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
5
OpenCitations
 
2
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu