Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Automated Recommendation of Templates for Legal Requirements
SLEIMI, Amin; CECI, Marcello; SABETZADEH, Mehrdad et al.
2020In Proceedings of the 28th IEEE International Requirements Engineering Conference (RE'20)
Peer reviewed
 

Documents


Texte intégral
SCSBD_RE20.pdf
Preprint Auteur (307.16 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Legal Requirements; AI-assisted RE; Natural Language Processing; Requirements Templates
Résumé :
[en] [Context] In legal requirements elicitation, requirements analysts need to extract obligations from legal texts. However, legal texts often express obligations only indirectly, for example, by attributing a right to the counterpart. This phenomenon has already been described in the Requirements Engineering (RE) literature. [Objectives] We investigate the use of requirements templates for the systematic elicitation of legal requirements. Our work is motivated by two observations: (1) The existing literature does not provide a harmonized view on the requirements templates that are useful for legal RE; (2) Despite the promising recent advancements in natural language processing (NLP), automated support for legal RE through the suggestion of requirements templates has not been achieved yet. Our objective is to take steps toward addressing these limitations. [Methods] We review and reconcile the legal requirement templates proposed in RE. Subsequently, we conduct a qualitative study to define NLP rules for template recommendation. [Results and Conclusions] Our contributions consist of (a) a harmonized list of requirements templates pertinent to legal RE, and (b) rules for the automatic recommendation of such templates. We evaluate our rules through a case study on 400 statements from two legal domains. The results indicate a recall and precision of 82,3% and 79,8%, respectively. We show that introducing some limited interaction with the analyst considerably improves accuracy. Specifically, our human-feedback strategy increases recall by 12% and precision by 10,8%, thus yielding an overall recall of 94,3% and overall precision of 90,6%.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SLEIMI, Amin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CECI, Marcello  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Dann, John
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Automated Recommendation of Templates for Legal Requirements
Date de publication/diffusion :
2020
Nom de la manifestation :
28th IEEE International Requirements Engineering Conference (RE'20)
Date de la manifestation :
from 31-08-2010 to 04-09-2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 28th IEEE International Requirements Engineering Conference (RE'20)
Maison d'édition :
IEEE, Etats-Unis
Peer reviewed :
Peer reviewed
Projet FnR :
FNR11801776 - Semantic Metadata And Compliance Rule Extraction From Legal Texts, 2017 (01/01/2018-30/04/2021) - Lionel Briand
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 24 juin 2020

Statistiques


Nombre de vues
441 (dont 29 Unilu)
Nombre de téléchargements
606 (dont 24 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
13
OpenCitations
 
4
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu