Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
An AI-assisted Approach for Checking the Completeness of Privacy Policies Against GDPR
TORRE, Damiano; ABUALHAIJA, Sallam; SABETZADEH, Mehrdad et al.
2020In Proceedings of the 28th IEEE International Requirements Engineering Conference (RE’20), Zurich, Switzerland, August 31 - September 04, 2020
Peer reviewed
 

Documents


Texte intégral
An AI-assisted Approach for Checking the Completeness of Privacy Policies Against GDPR.pdf
Postprint Auteur (376.76 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Legal Compliance; Privacy Policies; The General Data Protection Regulation (GDPR); Natural Language Processing (NLP); Machine Learning (ML); Case Study Research
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TORRE, Damiano ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
ABUALHAIJA, Sallam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Baetens, Katrien;  Linklaters LLP
Goes, Peter;  Linklaters LLP
Forastier, Sylvie;  Linklaters LLP
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
An AI-assisted Approach for Checking the Completeness of Privacy Policies Against GDPR
Date de publication/diffusion :
septembre 2020
Nom de la manifestation :
The 28th IEEE International Requirements Engineering Conference (RE’20)
Date de la manifestation :
from 31-08-2020 to 04-09-2020
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 28th IEEE International Requirements Engineering Conference (RE’20), Zurich, Switzerland, August 31 - September 04, 2020
Maison d'édition :
IEEE
Pagination :
136-146
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR13759068 - Artificial Intelligence-enabled Automation For Gdpr Compliance, 2019 (01/01/2020-31/12/2022) - Lionel Briand
Organisme subsidiant :
FNR - Luxembourg National Research Fund
Commentaire :
Privacy policies are critical for helping individuals make informed decisions about their personal data. In Europe, privacy policies are subject to compliance with the General Data Protection Regulation (GDPR). If done entirely manually, checking whether a given privacy policy complies with GDPR is both time-consuming and error-prone. Automated support for this task is thus advantageous. At the moment, there is an evident lack of such support on the market. In this paper, we tackle an important dimension of GDPR compliance checking for privacy policies. Specifically, we provide automated support for checking whether the content of a given privacy policy is complete according to the provisions stipulated by GDPR. To do so, we present: (1) a conceptual model to characterize the information content envisaged by GDPR for privacy policies, (2) an AI-assisted approach for classifying the information content in GDPR privacy policies and subsequently checking how well the classified content meets the completeness criteria of interest; and (3) an evaluation of our approach through a case study over 24 unseen privacy policies. For classification, we leverage a combination of Natural Language Processing and supervised Machine Learning. Our experimental material is comprised of 234 real privacy policies from the fund industry. Our empirical results indicate that our approach detected 45 of the total of 47 incompleteness issues in the 24 privacy policies it was applied to. Over these policies, the approach had eight false positives. The approach thus has a precision of 85% and recall of 96% over our case study.
Disponible sur ORBilu :
depuis le 22 juin 2020

Statistiques


Nombre de vues
697 (dont 86 Unilu)
Nombre de téléchargements
1654 (dont 73 Unilu)

citations Scopus®
 
64
citations Scopus®
sans auto-citations
52
OpenCitations
 
19
citations OpenAlex
 
65
citations WoS
 
50

Bibliographie


Publications similaires



Contacter ORBilu