[en] In this chapter, we investigate the performance of edge-caching wireless networks by taking into account the caching capability when designing the signal transmission. We consider hierarchical caching systems in which the contents can be prefetched at both user terminals or the base station and investigate the energy performance under two notable uncoded and coded caching strategies. The backhaul and access throughputs are derived for both caching policies for arbitrary values of base station and user cache sizes from which closed-form expressions for the corresponding system energy efficiency (EE) are obtained. Furthermore, we propose two optimization problems to maximize the system EE and minimize the content delivery time subject to some given quality of service requirements.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
VU, Thang Xuan ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Energy-efficient deployment in wireless edge caching
Date de publication/diffusion :
août 2020
Titre de l'ouvrage principal :
Wireless Edge Caching: Modeling, Analysis, and Optimization
Maison d'édition :
Cambridge University Press, London, Royaume-Uni
Peer reviewed :
Peer reviewed
Projet FnR :
FNR11691338 - Proactive Edge Caching For Content Delivery Networks Powered By Hybrid Satellite/Terrestrial Backhauling, 2017 (01/07/2018-31/12/2021) - Bjorn Ottersten