Article (Périodiques scientifiques)
Beam-inside-beam contact: Mechanical simulations of slender medical instruments inside the human body
MAGLIULO, Marco; LENGIEWICZ, Jakub; ZILIAN, Andreas et al.
2020In Computer Methods and Programs in Biomedicine, 196, p. 105527
Peer reviewed
 

Documents


Texte intégral
MagliuloLengiewiczZilianBeex_CompMethAndProgramsInBiomedicine_2020.pdf
Postprint Éditeur (1.43 MB)
Télécharger

This is an open access article under the CC BY-NC-ND license


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
surgical simulation; contact mechanics; beam-inside-beam; artery; cochlea
Résumé :
[en] Background and Objective This contribution presents a rapid computational framework to mechanically simulate the insertion of a slender medical instrument in a tubular structure such as an artery, the cochlea or another slender instrument. Methods Beams are employed to rapidly simulate the mechanical behaviour of the medical instrument and the tubular structure. However, the framework’s novelty is its capability to handle the mechanical contact between an inner beam (representing the medical instrument) embedded in a hollow outer beam (representing the tubular structure). This “beam-inside-beam” contact framework, which forces two beams to remain embedded, is the first of its kind since existing contact frameworks for beams are “beam-to-beam” approaches, i.e. they repel beams from each other. Furthermore, we propose contact kinematics such that not only instruments and tubes with circular cross-sections can be considered, but also those with elliptical cross-sections. This provides flexibility for the optimization of patient-specific instruments. Results The results demonstrate that the framework’s robustness is substantial, because only a few increments per simulation and a few iterations per increment are required, even though large deformations, large rotations and large curvature changes of both the instrument and tubular structure occur. The stability of the framework remains high even if the modulus of the inner tube is thousand times larger than that of the outer tube. A mesh convergence study furthermore exposes that a relatively small number of elements is required to accurately approach the reference solution. Conclusions The framework’s high simulation speed originates from the exploitation of the rigidity of the beams’ cross-sections to quantify the exclusion between the inner and the hollow outer beam. This rigidity limits the accuracy of the framework at the same time, but this is unavoidable since simulation accuracy and simulation speed are two competing interests. Hence, the framework is particularly attractive if simulation speed is preferred over accuracy.
Centre de recherche :
Institute of Computational Engineering
Disciplines :
Science des matériaux & ingénierie
Auteur, co-auteur :
MAGLIULO, Marco ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
LENGIEWICZ, Jakub ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
BEEX, Lars ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Beam-inside-beam contact: Mechanical simulations of slender medical instruments inside the human body
Date de publication/diffusion :
novembre 2020
Titre du périodique :
Computer Methods and Programs in Biomedicine
ISSN :
0169-2607
Maison d'édition :
Elsevier, Limerick, Pays-Bas
Volume/Tome :
196
Pagination :
105527
Peer reviewed :
Peer reviewed
Focus Area :
Physics and Materials Science
Projet européen :
H2020 - 800150 - MOrPhEM - Mechanics of Programmable Matter
Intitulé du projet de recherche :
TEXTOOL
Organisme subsidiant :
University of Luxembourg - UL
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 07 mai 2020

Statistiques


Nombre de vues
866 (dont 39 Unilu)
Nombre de téléchargements
179 (dont 11 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
5
OpenCitations
 
3
citations OpenAlex
 
6
citations WoS
 
6

Bibliographie


Publications similaires



Contacter ORBilu