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Background and Objective: This contribution presents a rapid computational framework to mechanically 

simulate the insertion of a slender medical instrument in a tubular structure such as an artery, the 

cochlea or another slender instrument. 

Methods: Beams are employed to rapidly simulate the mechanical behaviour of the medical instrument 

and the tubular structure. However, the framework’s novelty is its capability to handle the mechani- 

cal contact between an inner beam (representing the medical instrument) embedded in a hollow outer 

beam (representing the tubular structure). This “beam-inside-beam” contact framework, which forces 

two beams to remain embedded, is the first of its kind since existing contact frameworks for beams 

are “beam-to-beam” approaches, i.e. they repel beams from each other. Furthermore, we propose contact 

kinematics such that not only instruments and tubes with circular cross-sections can be considered, but 

also those with elliptical cross-sections. This provides flexibility for the optimization of patient-specific 

instruments. 

Results: The results demonstrate that the framework’s robustness is substantial, because only a few incre- 

ments per simulation and a few iterations per increment are required, even though large deformations, 

large rotations and large curvature changes of both the instrument and tubular structure occur. The sta- 

bility of the framework remains high even if the modulus of the inner tube is thousand times larger than 

that of the outer tube. A mesh convergence study furthermore exposes that a relatively small number of 

elements is required to accurately approach the reference solution. 

Conclusions: The framework’s high simulation speed originates from the exploitation of the rigidity of 

the beams’ cross-sections to quantify the exclusion between the inner and the hollow outer beam. This 

rigidity limits the accuracy of the framework at the same time, but this is unavoidable since simulation 

accuracy and simulation speed are two competing interests. Hence, the framework is particularly attrac- 

tive if simulation speed is preferred over accuracy. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Mechanical simulations of surgical interventions can be used to

rain surgeons, reveal patient-specific complications that may oc-

ur during surgery and plan interventions patient-specifically. In

he future, mechanical simulations of surgical interventions may

ven be used to optimize medical instruments for each patient

 e.g. shape and stiffness) and be exploited to autonomously per-
orm interventions. 
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Numerous frameworks to numerically simulate surgical inter-

entions can be found in the literature. For instance, one set of

rameworks simulates cutting through soft tissues in real-time [4–

,34,42] to provide haptic feedback to the trainee performing the

intervention”. Another set of approaches aims to simulate the

nsertion of needles [2,3,8,10,36] . These frameworks may also be

sed to provide haptic feedback and/or to help to accurately steer

he needle to the target of interest during surgery. 

However, the framework presented in this contribution focuses

n mechanical simulations that involve the insertion (or removal)

f a slender medical instrument inside a tubular structure such

s an artery, the cochlea or another slender instrument such as
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Fig. 1. Beam kinematics for the current configuration. The beam’s centroid-line is 

presented with a dashed line. Local basis vector e 3 is not aligned with the vector 

tangent to the centroid-line ∂x c 
∂h 1 

due to shear deformation. A typical vector v lying 

on C (grey ellipse) is presented with a red arrow. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
a catheter or an endoscope. In other words, our simulations do

not involve the damaging of tissues due to cutting or needle inser-

tion. The aim of this contribution is not to target one type of in-

tervention in particular, but to present the first mechanically con-

sistent formulation that can handle contact between one slender

deformable body inside another slender deformable body, if both

bodies are represented by beams. 

Thus, the proposed framework is similar to the frameworks

presented in [1,9,15,27,39] in which the insertion of guide-wires

and catheters in arteries and the insertion of slender implants

in the human cochlea are simulated. The difference between the

proposed framework and the frameworks of [1,9,15,27,39] is that

our framework represents both the slender medical instrument

and the tubular structure as beams, whereas the frameworks of

[1,9,15,27,39] only represent the slender medical instrument with

beams whilst conventional 3D finite elements are used to repre-

sent the tubular structure. 

A wide variety of schemes to handle contact between beams

can be distinguished in the literature. All existing “beam-to-beam”

contact frameworks are formulated to repel penetrating beams.

Several of these beam-to-beam contact frameworks are only ap-

plicable if the beams’ cross-sections are circular, shear deforma-

tions are ignored and the contact area remains small, since unilat-

eral contact conditions are enforced at the closest pair of centroid

points [33,41,43] . Thus, if two beams collide, a contact force is ap-

plied at the closest pair of centroid points to repel the two beams.

If the beams’ cross-sections are elliptical, the consideration of the

centroid-lines alone is insufficient to determine the contact loca-

tions. Instead, contact forces must be applied at the closest pair of

surface points where the tangent planes of the contacting surfaces

are parallel. This was demonstrated by Gay Neto et al. [12,13] for

frictionless and frictional cases, respectively. 

Furthermore, in case of non-localized contact (e.g. for paral-

lel beams in contact), the assumption of point-wise contact does

not hold. Meier et al. [30] have therefore proposed a contact

framework to handle non-localized beam-to-beam contact, but the

cross-sectional shape is restricted to (rigidly) circular and shear de-

formation is not accounted for. These restrictions enable quantify-

ing the penetration solely using the centroid-lines of the beams,

which yields rapid simulations. 

Magliulo et al. [28,29] presented other master-slave frameworks

for beam-to-beam contact applicable to both shear-deformable and

shear-undeformable beams, with both circular as well as elliptical

cross-sections. Both schemes consider the beam’s surfaces explic-

itly, which has resulted in wider applicability than the scheme of

Meier et al. [30] , albeit at the expense of the simulation speed. A

two-half pass algorithm was furthermore formulated in [29] to re-

move the bias of master-slave approaches for beam-to-beam con-

tact, but with limited benefits for the results. 

The beam conglomerates of interest to this contribution dif-

fer from the aforementioned works [28,29] , since the focus is on

“beam-inside-beam” contact instead of “beam-to-beam” contact. In

other words, the beams must remain embedded for the beam con-

glomerates of interest in our contribution, whereas existing beam-

to-beam contact frameworks repel penetrating beams. The mea-

sure of penetration in our beam-inside-beam framework, on the

other hand, shows similarities with the measure of penetration

for the “beam-to-beam” contact framework of [28] . Penetration is

measured between sections distributed along the inner beam and

the interior surface of the outer beam. In case of contact, unilateral

constraints are regularized with the penalty method, which brings

compliance to the otherwise rigid cross-sections. 

The outline of the remainder of this contribution is as fol-

lows. In Section 2 , the contact framework is presented in the

space-continuous setting along with the associated contact vir-

tual work. Also in this section, the spatial discretization applied
o the finite element method is discussed. The contact kinemat-

cs and the contact virtual work are subsequently discretized. Im-

lementation details are also included. The numerical examples of

ection 3 indicate the promising capabilities of the contact frame-

ork. Section 4 discusses possible extensions and concludes this

ontribution. 

. Methods 

.1. Space-continuous contact formulation 

The contact kinematics employed in this contribution are pre-

ented in this section [12,13,28,29] . First, the beam’s surface

arametrization is explained. Then, the procedure to quantify pen-

tration is detailed. The formulation of the contact virtual work is

resented for a penalty approach. 

.1.1. Parametrization of the surface 

The geometrically exact beam (GEB) Simo-Reissner theory

7,16,17,31,35,37,38] is used in this contribution. This entails that

he beams are shear-deformable and that rigid cross-sections are

onsidered, which cannot warp. 

The surface of beam B is parameterized with two convective

arameters h = 

[
h 1 , h 2 

]T 
. h 1 ∈ [ 0 , L ] , denotes the arc-length param-

ter of the beam’s centroid line x 0 c : ( 0 , L ) → R 

3 while h 2 ∈ [ 0 , 2 π ]

s a circumferential parameter of the perimeter of cross-section C
ttached to x 0 c (h 1 ) (see [12] and Fig. 1 ). L denotes the initial length

f the beam. The location of a surface point in the undeformed

onfiguration in the global coordinate system, x 0 , can be obtained

rom: 

 0 ( h ) = x 0 c (h 

1 ) + v 0 ( h ) , (1)

here v 0 denotes a vector contained in C. Here, we assume that

 0 always connects x 0 c to a surface point. In case C is elliptical, v 0 
an be expressed as: 

 0 ( h ) = a cos (h 

2 ) e 01 (h 

1 ) + b sin (h 

2 ) e 02 (h 

1 ) , (2)

here a and b denote the dimensions of the elliptical cross-

ections in its principal directions. e 01 and e 02 are orthonormal ba-

is vectors of the plane containing C. e 03 denotes the normal vector

o C. The triad { e 01 , e 02 , e 03 } forms an orthonormal basis. 

Due to the hypothesis of rigid sections, the location of the same

aterial point in the deformed configuration can similarly be ob-

ained from: 

 ( h ) = ϕ(x 0 ( h )) = x c (h 

1 ) + v ( h ) , (3)

here: 

 c = x 0 c + u , (4)

enotes the location of the centroid point in the deformed config-

ration. u : ( 0 , L ) → R 

3 denotes the centroid-line’s displacement. ϕ
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enotes the deformation mapping relating the current location of

 point to its location in the undeformed configuration such that

 ( h ) = ϕ(X ( h )) . v is obtained from: 

 ( h ) = �(h 

1 ) · v 0 ( h ) = a cos (h 

2 ) e 1 + b sin (h 

2 ) e 2 , (5)

here �: (0, L ) → SO (3), with SO (3) the rotation group, is a ro-

ation tensor that rotates e 0 i to e i for i ∈ {1, 2, 3}. Because shear

eformation can be present, e 3 is not necessarily aligned with the

angent to the centroid-line (see Fig. 1 ). In such cases, i.e. : 

 3 × ∂x c 

∂h 

1 
� = 0 , (6)

here × denotes the cross product. 

For further use, we define two (covariant) tangent vectors to

he surface of B at x ( h ) , denoted by τ1 = 

∂x 
∂h 1 

and τ2 = 

∂x 
∂h 2 

(see

ig. 1 ). In general, τ1 and τ2 are not orthogonal to each other. 

.1.2. Contact kinematics 

We focus here on a system consisting of two bodies: B 

I denotes

he thin inner beam and B 

J denotes the hollow outer beam. We

ssume here that both B 

I and B 

J are modeled as a GEB with plain

nd hollow cross-sections, respectively. We denote by ∂B 

J the in-

erior surface of B 

J . 

To quantify the penetration of B 

I with ∂B 

J , and to quantify the

ontact area over which this penetration occurs, we: 

1. Seed sections along the centroid-line of B 

I (see Fig. 3 ), 

2. For each seeded section, we solve a projection (local) prob-

lem to determine if it penetrates ∂B 

J and if so, by how much.

This projection problem yields two surface points: one on the

perimeter of the seeded section and one on ∂B 

J . These points

are used to establish a measure of penetration, which in turn

determines the amplitude of the contact forces (if penetration

is present). 

As B 

I and B 

J have a different role, the proposed framework is

 master-slave approach. We call B 

I the slave and B 

J the master

40] . Next, we discuss how to compute if a given section of B 

I ,

enoted by C with perimeter ∂C, penetrates ∂B 

J and if so, how

he amount of penetration is computed. 

It must be noted that the proposed contact algorithm can only

e used if one contact area occurs for each cross-sections (left in

ig. 2 ). The contact framework can thus not handle scenarios as

resented on the right in Fig. 2 . If the cross-sections of B 

I is per-

ectly aligned with the cross-sections of B 

J , only one contact area

ccurs if: 

(a inner ) 
2 

b inner 

< 

(b outer ) 2 

a outer 
a inner ≥ b inner a outer ≥ b outer , (7)

here subscript inner refers to the inner beam and subscript outer

efers to the inner cross-sections of the outer beam. 

We now introduce n 

I , an outward pointing unit vector normal

o ∂B 

I . It is defined as follows: 
Fig. 2. Problem of multiple contact areas: (a) sin
 

I 
(
h 

I 
)

= 

τI 
1 ( h 

I 
) × τI 

2 ( h 

I 
) ∥∥τI 

1 
( h 

I 
) × τI 

2 
( h 

I 
) 
∥∥ . (8) 

 

J on the other hand is the inward pointing unit vector normal to

B 

J . It is defined as follows: 

 

J 
(
h 

J 
)

= 

τJ 
1 ( h 

J 
) × τJ 

2 ( h 

J 
) ∥∥τJ 

1 
( h 

J 
) × τJ 

2 
( h 

J 
) 
∥∥ . (9) 

ocal problem and measure of penetration between ∂C and ∂B 

J . 

e will now investigate if C, the cross-section uniquely defined by

onvective coordinate h C , penetrates ∂B 

J and if so, by how much.

he so-called gap vector g connects a point on the perimeter of C,

 

I ∈ ∂C, to a surface point on ∂B 

J , x J : 

 (h 

C , h 

I 2 , h 

J 1 , h 

J 2 ) = x 

J (h 

J 1 , h 

J 2 ) − x 

I (h 

C , h 

I 2 ) . (10)

 local (or projection) problem must now be solved, which yields

oints x̄ I and x̄ J , such that an appropriate measure of penetration

s established. Four convective coordinates are involved in the local

roblem: h C , which is fixed, as well as h I 2 , h J 1 and h J 2 that are to

e determined. 

A possibility to determine the unknown convective coordinates

ould be to solve an optimization problem by minimizing an ob-

ective function. Another possibility [12–14,21,22,33] is to solve for

 set of equations that does not stem from an objective func-

ion, generally unilateral or bilateral orthogonality conditions. Pre-

iously, we have shown that the latter makes the resolution of

he local problem 20–30% faster to solve for beam-to-beam con-

act [28] . We therefore consider a similar approach for the beam-

nside-beam contact of this contribution. Three of the equations we

olve for are expressed as: 

 1 ( ̄q ) = x̄ 

J − x̄ 

I − ḡ ̄n 

I = 0 , (11)

here: 

 = 

[
h 

I 2 , h 

I 1 , h 

J 2 , g 
]T 

, (12) 

enotes the array of unknowns. Here and in the following, an over-

ead bar over a quantity indicates that it is evaluated at the solu-

ion of the projection problem. Thus, q̄ denotes the array solution

f Eq. 11 . The independent variable ḡ quantifies penetration mea-

ured in the normal direction n̄ 

I (h C , ̄h I 2 ) , usually denoted as g N 
nd defined as: 

 N = ḡ = ( ̄x 

J − x̄ 

I ) · n̄ 

I . (13)

As four variables are present for only three equations, the sys-

em of Eq. 11 is under-determined. An additional equation is re-

uired. To this end, we introduce plane P spanned by n 

I and τI 
2 

ith the following normal vector: 

˜ 
 

I = τI 
2 × n 

I . (14) 

lso, we define n 

J p as the normalized projection of n 

J on P: 

 

J p = 

n 

J − (n 

J · ˜ n 

I ) ̃  n 

I 

‖ 

n 

J − (n 

J · ˜ n 

I ) ̃  n 

I ‖ 

. (15) 
gle contact area and (b) two contact areas. 
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Fig. 3. (a) Two beams in contact. (b) Sections for which penetration has been detected. 

Fig. 4. Perpendicular view to the plane P of ∂C. Surface points x̄ I and x̄ J , obtained 

after solving Eq. 17 , are presented as red dots. Vectors n̄ I and n̄ J p are both orthog- 

onal to τ̄J 
2 . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

. 

 

T

 

T  

b

n  

w

N  

a

l  

T  

e

 

w

 

 

At the solution of the local problem, we want n 

I and n 

J p to be

orthogonal to τJ 
2 

(see Fig. 4 ). This is true if the following equation

holds: 

f 2 ( ̄q ) = a C ( ̄n 

I + n̄ 

J p ) · τ̄J 
2 = 0 , (16)

where a C denotes the dimension of C along its largest semi-axis

which is used to scale f 1 such that f 1 and f 2 have the same units.

The set of equations to solve for is now abbreviated as follows: 

f ( ̄q ) = 

[
f 1 ( ̄q ) , f 2 ( ̄q ) 

]T = 0 . (17)

The set of equations to solve for in Eq. 17 is nonlinear. To solve

it, we apply Newton’s method for which we linearise residual f 

which requires the following Jacobian: 

H ( q ) = 

∂ f 

∂ q 
= 

⎡ 

⎣ 

∂f 1 
∂ q (

∂ f 2 
∂ q 

)T 

⎤ 

⎦ . (18)

To compute the components of H , we need to introduce the fol-

lowing quantities: 

1. Contravariant components M 

Ki j of M 

K , the metric tensor of the

surface of body K, read: [
M 

K11 M 

K12 

M 

K21 M 

K22 

]
= 

[
M 

K 
11 M 

K 
12 

M 

K 
21 M 

K 
22 

]−1 

= 

[
τK 

1 · τK 
1 τK 

1 · τK 
2 

τK 
2 · τK 

1 τK 
2 · τK 

2 

]−1 

. 

(19)

2. The second order surface derivatives: 

τK 
i j = 

∂ τK 
i 

∂h 

K 
j 

. (20)

3. The covariant components of curvature tensor C K : 

K K K 
C i j = τ i j · n (21) 
4. Weingarten’s formula: 

∂n 

K 

∂h j 

= −M 

K jk C K ki τ
K 
j . (22)

Making use of Eq. 22 , the partial derivatives of f 1 with respect

o q in Eq. 18 yield: 

∂f 1 
∂ q 

= 

[
∂f 1 
∂h I 2 

, 
∂f 1 
∂h J 1 

, 
∂f 1 
∂h J 2 

, 
∂f 1 
∂g 

]
= 

[
−τI 

2 + g (M 

I jk C I k 2 τ
I 
j ) , τ

J 
1 , τ

J 
2 , −n 

I 
]

(23)

he differentiation of f 2 with respect to q gives: 

∂ f 2 
∂ q 

= 

[
∂ f 2 
∂h 

I 2 
, 

∂ f 2 
∂h 

J 1 
, 

∂ f 2 
∂h 

J 2 
, 
∂ f 2 
∂g 

]T 

. (24)

he corresponding expressions are more complicated, in particular

ecause n 

J p depends on h I 2 , h J 1 and h J 2 . 

We now rewrite n 

J p as: 

 

J p = 

N 

n J p 

l n J p 
, (25)

here: 

 

n J p = n 

J · ( I − ˜ n 

I 
� ˜ n 

I ) = n 

J · D , (26)

nd: 

 

n J p = 

∥∥N 

n J p 
∥∥. (27)

he partial derivative of n 

J p with respect to the k th -surface param-

ter of body l reads: 

∂n 

J p 

∂h 

l k 
= 

1 

l n J p 
(
I −n 

J p 
� n 

J p 
)

· ∂ N 

n J p 

∂h 

l k 
= E · ∂ N 

n J p 

∂h 

l k 
, (28)

here: 

∂ N 

n J p 

∂h 

l k 
= 

∂n 

J 

∂h 

l k 
· D − n 

J · ∂ D 

∂h 

l k 

= 

∂n 

J 

∂h 

l k 
· D − n 

J ·
(

∂ ̃  n 

I 

∂h 

l k 
� ˜ n 

I + 

˜ n 

I 
�

∂ ̃  n 

I 

∂h 

l k 

)
(29)

= δlJ 
(
−M 

J lm C mk τK 
)

· D − n 

J ·
(

∂ ̃  n 

I 

∂h 

l k 
� ˜ n 

I + 

˜ n 

I 
�

∂ ̃  n 

I 

∂h 

l k 

)
, 

(30)
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here δ denotes the Kronecker symbol (not to be confused with

he variation symbol). The term 

∂ ̃ n I 

∂h l k 
, where: 

˜ 
 

I = 

N 

˜ n J 

l N ̃
 n J 

, (31) 

ith: 

 

˜ n J = τI 
2 × n 

I , (32) 

nd: 

 

N ˜ n J = 

∥∥τI 
2 × n 

I 
∥∥, (33) 

eads: 

∂ ̃  n 

I 

∂h 

l k 
= 

1 

l N ̃
 n J 

(
I −˜ n 

I 
� ˜ n 

I 
)

· ∂ N 

˜ n J 

∂h 

l k 
= F · ∂ N 

˜ n J 

∂h 

l k 
. (34) 

e can write: 

∂ N 

˜ n J 

∂h 

l k 
= δlI 

(
τI 

2 k × n 

I + τI 
2 ×

(
−M 

I i j C I jk τ
I 
i 

))
= c , (35) 

uch that: 

∂ ̃  n 

I 

∂h 

l k 
= F · c . (36) 

inally, this yields: 

∂n 

J p 

∂h l k 
= 

1 

l n 
J p 

(
I −n 

J p 
� n 

J p 
)

· ∂ N 

n J p 

∂h I 2 

= E ·
(
δlJ 
(
−M 

J lm C mk τK 
)

· D − n 

J ·
(
( F · c ) � ˜ n 

I + 

˜ n 

I 
� ( F · c ) 

))
= d 

l k . (37) 

sing Eq. 37 , compact expressions for the components of 
∂ f 2 
∂ q 

in

q. 24 can be obtained: 

∂ f 2 
∂h 

I 2 
= a C 

(
∂n 

I 

∂h 

I 2 
+ 

∂n 

J p 

∂h 

I 2 

)
· τJ 

2 

= a C 
(
−M 

I jk C I k 2 τ
I 
j + d 

I 2 
)

· τJ 
2 , (38) 

∂ f 2 
∂h 

J 1 
= a C 

(
∂n 

J p 

∂h 

J 1 
· τJ 

2 + n 

J p · ∂ τJ 
2 

∂h 

J 1 

)
= a C 

(
d 

J 1 · τJ 
2 + n 

J p · τJ 
21 

)
, (39) 

∂ f 2 
∂h 

J 2 
= a C 

(
∂n 

J p 

∂h 

J 2 
· τJ 

2 + n 

J p · ∂ τJ 
2 

∂h 

I 2 

)
= a C 

(
d 

J 2 · τJ 
2 + n 

J p · τJ 
22 

)
. (40) 

ombining Eqs. 23 , 38, 39, 40 , H reads: 

 = 

⎡ 
⎣ −τI 

2 
+ g (M 

I jk C I 
k 2 

τI 
j 
) τJ 

1 
τJ 

2 
−n I 

a C 
(
−M 

I jk C I 
k 2 

τI 
j 
+ d I 2 

)
· τJ 

2 
a C 
(
d J 1 · τJ 

2 
+ n J p · τJ 

21 

)
a C 
(
d J 2 · τJ 

2 
+ n J p · τJ 

22 

)
0 

⎤ 
⎦ . 

(41) 

irst-guess procedure 

As stated above, Eq. 17 is solved iteratively. An initial guess of

he local parameters q must be provided to the solver. We em-

loy a simple two-step procedure to establish an appropriate first

uess: 

1. We (approximately) find the centroid point of the master body

that is the closest to the centroid point of the slave cross-

section, x I c (h C ) . A simple way of achieving this is by sampling

cross-section points along the master beam’s centroid-line and

pick the closest centroid-point from x I c (h C ) . The associated con-

vective parameter of the closest sampled centroid point is de-

noted by h J 1 , f g . 
2. To determine the initial values of circumferential parameters

h I 2 , f g and h J 2 , f g , we locate a pair of perimeter points on the

cross-sections attached to x I c (h C ) and x J c (h J 1 , f g ) . This procedure

is depicted in Fig. 5 . We start by sampling four points on the

perimeter of both cross-sections. The pair of closest points is

then chosen. Next, for each cross-section, we seed a point on

the middle of each sub-curve attached to the point previously

selected ((c) in Fig. 5 ). Again, the closest pair of points is se-

lected. This procedure is repeated several times. In our simula-

tions, it was repeated until the relative change of the distance

between the pair of closest points falls below 10%. 

Note that in practice, the approach to establish the initial guess

s only performed for a given slave cross-section if it is not active

ut close to the master surface. If a slave cross-section is active

meaning that it already penetrated the master surface in a pre-

ious contact detection), the solution of the local problem of the

revious contact detection ( ̄q ) is used as the first guess. 

.1.3. Contact constraints and virtual work equation including contact

The impenetrability of ∂C and ∂B 

J is enforced via unilateral

ontact conditions: 

 N ≥ 0 T N < 0 g N T N = 0 , (42)

here T N denotes the nominal contact traction, meaning that it

efers to the reference surface area. 

In case of contact, a contact virtual work, δ�c , is added to the

irtual work equation for the two-body system and the space of

dmissible variations V is modified [40] . In the quasi-static setting,

he virtual work reads: 

�( p IJ , δp IJ ) = δ�B I ( p 
I , δp I ) + δ�B J ( p 

J , δp J ) 

+ δ�c ( p 
IJ , δp IJ ) = 0 , ∀ δp IJ ∈ V , (43) 

here δ�B i denotes the internal and external virtual work of

eam B 

i (excluding contact interactions). Kinematic variables as-

ociated with B 

i are denoted by p i = 

[ 
u 

i , θ
i 
] T 

: ( 0 , L ) → R 

3 × R 

3 

nd the associated test functions by δp i . u 

i denotes the displace-

ent field of the B 

i ’s centroid-line and θi its field of rotation vec-

ors parametrizing SO(3) [16] . p i is only admissible if p i (X 

B i ) =
p i 

D 
(X 

B i ) , ∀ X 

B i ∈ ∂ B 

i 
D 

. ∂ B 

i 
D 

denotes the part of the boundary of ∂B 

i 

here Dirichlet boundary conditions are imposed [40] . 

p IJ = 

[
p I , p J 

]T 
gathers the kinematic variables of both beams.

imilarly, test functions are gathered in δp IJ = 

[
δp I , δp J 

]T 
. 

In Eq. 43 , the virtual work due to contact, δ�c , accounts for all

he sections penetrated. The infinitesimal virtual work produced at

 single section, denoted by d δ�c , can be written as [28] : 

δ�c = T N δg N 

∥∥∥∥ ∂x 

I 
0 c 

∂h 

I 1 

∥∥∥∥dh 

I 1 , (44)

here δg N denotes the variation of g N that depends on all kine-

atic variables in p IJ , and dh I 1 denotes the differential of the

lave’s centroid line parameter associated to C. dh I 1 is related to

he differential length of the undeformed centroid-line according

o: 

 L B 
I = 

∥∥∥∥ ∂x 

I 
0 c 

∂h 

I 1 

∥∥∥∥d h 

I 1 , (45)

ext, we discuss how to calculate T N for the penalty approach used

n this contribution and also how to compute δg N . The nominal

raction vector has been preferred over the current traction vector

s the former must be integrated in the length of the slave beam

n the reference configuration, while the latter has to be integrated

ver the current configuration. As the reference configuration does
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Fig. 5. Illustration of the procedure to determine a good initial guess for the local problem. (a) Determination of centroid point x J c (h J 1 , f g ) that must be as close as possible 

to x I c (h C ) ; (b) Determination of the closest pair of points amongst sampled points on ∂C and the perimeters of the cross-section attached to x J c (h J 1 , f g ) ; (c) Determination of 

the closest pair of points amongst the closest pair of points from (b) (in orange) and points in the middle of the curve connected to theses points (in red). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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not depend on p IJ , the linearization of δ� yields shorter expres-

sions than if the current traction vector was employed [26] . 

Penalty method 

If a penalty formulation is used, contact traction T N , acting at

the pair of surface points x̄ J and x̄ I , is given by: 

T N = −εN 〈 −g N 〉 , (46)

where εN > 0 denotes the penalty stiffness and 〈 •〉 denote the

Macaulay brackets, representing the positive part of its operand

[25] . The fact that εN must be selected can be seen as a weak-

ness of the penalty method. Indeed, other constraint enforcement

methods like the Lagrange multipliers method do not need such

user-defined parameters. On the other hand, in the context of con-

tact frameworks for beams that are characterized by rigid cross

sections, the penalty parameter can be interpreted as some com-

pliance of the beams in the transversal directions [28,33] . Inserting

Eq. 46 into Eq. 44 , the virtual work of the contact force reads: 

dδ�c = −εN 〈 −g N 〉 δg N 

∥∥∥∥ ∂x 

I 
0 c 

∂h 

I 1 

∥∥∥∥dh 

I 1 . (47)

The virtual work of all penetrated sections follows from the in-

tegration of the infinitesimal virtual work of a single penetrated

section, d δ�c , along the centroid-line of B 

I as follows: 

δ�c = 

∫ h 1 I U 

h 1 I 
L 

dδ�c , (48)

where h 1 I 
L 

and h 1 I 
U 

are the lower and upper bounds of the integral,

respectively. 

Variation of the normal gap, δg N 
g N = ḡ · n̄ 

I , measured for a fixed h I 1 , depends on p IJ but also

on the local variables in q , which in turn implicitly depend on p IJ .

Eventually, δg N must be solely expressed in terms of the variations

of the primary variables, here δp IJ . The variational operator ap-

plied to g N gives: 

δg N = δḡ · n̄ 

I + ḡ · δn̄ 

I . (49)

Also, we have: 

ḡ · δn̄ 

I = g N ̄n 

I · δn̄ 

I = 0 , (50)

as δn̄ 

I · n̄ 

I = 0 . Noting that ḡ depends on p IJ and q̄ ( p IJ ) , we get:

δḡ = 

(
∂g 

∂ p IJ 

∣∣∣
q = ̄q 

)T 

δp IJ + 

(
∂g 

∂ q 

∣∣∣
q = ̄q 

)T 

δq (51)

= 

(
∂g 

∂ p IJ 

∣∣∣
q = ̄q 

)T 

δp IJ + 

(
∂g 

∂ q 

∣∣∣
q = ̄q 

)T (
d q 

d p IJ 

∣∣∣
q = ̄q 

)
δp IJ . (52)
he relationships between q and p IJ can be found on the basis of

he stationarity of f ( p IJ , q̄ ( p IJ )) with respect to p IJ : 

d f 

d p IJ 
= 

(
∂ f 

∂ p IJ 

∣∣∣
q = ̄q 

)
δp IJ + 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∂ f 

∂ q ︸︷︷︸ 
H 

∣∣∣
q = ̄q 

⎞ 

⎟ ⎟ ⎟ ⎠ 

δq̄ = 0 , (53)

hich leads after some rearrangement to: 

q̄ = −
(

H 

−1 
∣∣∣

q = ̄q 

∂ f 

∂ p IJ 

∣∣∣
q = ̄q 

)
δp IJ . (54)

or further use, we define A as follows: 

 = −H 

−1 
∣∣∣

q = ̄q 

∂ f 

∂ p IJ 

∣∣∣
q = ̄q 

, (55)

uch that: 

q̄ = A δp IJ . (56)

nserting this in Eq. 52 yields: 

ḡ = 

( (
∂g 

∂ p IJ 

∣∣∣
q = ̄q 

)T 

+ 

(
∂g 

∂ q 

∣∣∣
q = ̄q 

)T 

A 

) 

δp IJ . (57)

nserting this into 49 yields: 

g N = δḡ · n̄ 

I = 

(
∂ ̄g 

∂ p IJ 

)T 

δp IJ · n̄ 

I + 

(
∂ ̄g 

∂ q 

)T 

A δp IJ · n̄ 

I (58)

= (δp IJ ) T 
(

∂ ̄g 

∂ p IJ 
· n̄ 

I + A 

T ∂ ̄g 

∂ q 
· n̄ 

I 

)
(59)

= (δp IJ ) T z . (60)

ote for further use that ∂ ̄g 
∂ p IJ 

n̄ 

I reads: 

∂g 

∂ p IJ 

∣∣∣
q = ̄q 

· n̄ 

I = 

∂ ̄x 

J 

∂ q 

T 

· n̄ 

I − ∂ ̄x 

I 

∂ q 

T 

· n̄ 

I (61)

= 

[ 

0 

τJ 
1 · n̄ 

I 

τJ 
2 · n̄ 

I 

] 

−
[ 

τI 
1 · n̄ 

I 

0 

0 

] 

(62)

= 

[ 

0 

τJ 
1 · n̄ 

I 

τJ 
2 · n̄ 

I 

] 

−
[ 

0 

0 

0 

] 

, (63)

here is it obvious from Eq. 63 that ∂ ̄x I 

∂ q 

T · n̄ 

I is independent of q . 
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All in all, we can write: 

�c = 

∫ h 1 I U 

h 1 I 
L 

−εN 〈 −g N 〉 z T δp IJ 

∥∥∥∥ ∂x 

I 
0 c 

∂h 

I 1 

∥∥∥∥dh 

I 1 . (64) 

.2. Spatial discretization 

.2.1. Interpolation of the beams’ surface 

The Finite Element Method (FEM) is the discretisation method

sed in this work. Each beam is now discretized with a set of

eam finite elements (BFEs) [16,37,38] . The rotation vectors are the

rimary rotational kinematic variables [16] that are interpolated.

or a BFE E , we denote by X 

h 
c (h 1 ) : 

(
0 , L E 

)
→ R 

3 the interpolated

osition of its centroid-line, where L E denotes the length of the

entroid-line in the undeformed configuration. u 

h 
c (h 1 ) : 

(
0 , L E 

)
→

 

3 and θ
h 
(h 1 ) : 

(
0 , L E 

)
→ R 

3 denote the interpolated displacement

eld of the centroid-line and the interpolated field of rotation vec-

ors, respectively. Rodrigues’ formula is used to obtain rotation ten-

or � from the interpolated rotation vector 1 , denoted θh . The dis-

lacement of node K is denoted by ˆ u 

E 
K 

and its rotation vector by

ˆ 
E 
K . The kinematic variables of element E are gathered in: 

p E = 

[ 
ˆ u 

E 
1 , . . . , ̂  u 

E 
n u 

, ̂  θ
E 
1 , . . . , ̂

 θ
E 
n θ

] T 
, (65) 

here n u and n θ denote the number of nodes used to interpo-

ate the displacement and the rotation vector, respectively. Since

he nodal variables of all BFEs of B 

I and B 

J are denoted by ˆ p , the

ssociated variations are denoted by δ ˆ p . 

.2.2. Contact residual and stiffness 

The discretized form of the virtual work in Eq. 43 leads to a set

f nonlinear equations. Newton’s method is generally used to iter-

tively determine the solution ˆ p 
sol 

of the virtual work statement.

his requires the linearization of Eq. 43 around an estimate of ˆ p 
sol 

,

ˆ p , which yields: 

�( ̂ p + � ̂ p , δ ˆ p ) � δ�( ̂ p , δ ˆ p ) + � δ�( ̂ p , δ ˆ p ) � ̂ p = δ ˆ p 
T 
( r g + K 

g 
� ̂ p ) � 0 , 

(66) 

here r g and K 

g 
denote the global residual force and the global

tiffness matrix, respectively. � ̂ p denotes an increment of the

odal variables. The global forces read: 

 g ( ̂  p ) = f 
int 

( ̂  p ) + r c ( ̂  p ) − f 
ext 

( ̂  p ) , (67)

here f int denotes the internal force vector stemming from the

ontribution of all BFEs, and f 
ext 

the external force vector. r c con-

ains all the contact contributions from all contact elements, where

 contact element refers to a seeded section attached at an integra-

ion point (see below) along B 

I and its projection on discretized

urface ∂B 

J . 

Assuming here that f 
ext 

does not depend on p IJ , the global

tiffness obtained after the linearization of r g , can be decomposed

s follows: 

 

g 
= K 

int 
+ K 

c 
, (68) 

here K 

int 
, denotes the stiffness matrix of the BFEs, and K 

c 
denotes

he stiffness matrix of all contact elements. 

The contact virtual work is the sum of all contact contributions:

�c ( ̂  p , δ ˆ p ) = 

∑ 

e ∈ S 
δ�c,e ( ̂  p 

e 
, δ ˆ p 

e 
) , (69)
1 It is well known that the corresponding finite element formulation does not 

hare the strain-invariance property of the underlying geometrically exact theory 

18] . 

w  

f  

m  

d

here S denotes the set of active contact elements ( i.e. those for

hich g N < 0), and δ�c , e denotes the contact virtual work asso-

iated with contact element e . If no smoothing procedure of the

urface is required [26] , each contact elements involves two BFEs,

ne which is part of the discretization B 

I , and the other which

s part of the discretization of B 

J . However, if a smoothing of the

eam’s surface is performed, each contact element directly de-

ends on several BFEs of B 

I and of B 

J . The set of elements of

 

I and B 

J used to construct contact element e are denoted by M
nd N , respectively. The involved nodal variables are gathered in

rray ˆ p 
e 

= 

[
ˆ p 
M 

, ˆ p 
N ]T 

. Similarly, the involved nodal variations are

enoted by δ ˆ p 
e 
. 

The linearization of δ�c reads: 

�c ( ̂  p + � ̂

 p , δ ˆ p ) = 

∑ 

e ∈ S 
δ�c,e ( ̂  p 

e 
+ � ̂

 p 
e 
, δ ˆ p 

e 
) 

≈
∑ 

e ∈ S 
δ�c ( ̂  p 

e 
, δ ˆ p 

e 
) + � δ�c ( ̂  p 

e 
, δ ˆ p 

e 
) � ̂

 p 
e 

(70) 

≈
∑ 

e ∈ S 
δ ˆ p 

T 

e 
( r ce + K 

ce 
� ̂

 p 
e 
) . (71)

ext, we discuss how to construct element contributions r ce and

 

ce 
to the global residual (force) vector and the global stiffness ma-

rix, respectively. 

orce vector and stiffness of contact element e 

We numerically integrate Eq. 39 with a quadrature (Gauss or

obato-type). To this end, we place n M 

IP 
integration points of a sin-

le subdomain along the centroid-line of M [21,33] . This yields: 

�c = −εN 

∫ 1 

−1 
〈 −g N (η) 〉 δg N (η) ‖ 

J (η) ‖ 

dη (72) 

≈ −εN 

n M 

IP ∑ 

k 

w k 〈 −g N (ηk ) 〉 δg N (ηk ) ‖ 

J (ηk ) ‖ 

, (73) 

≈
n M 

IP ∑ 

k 

w k 〈 −g Nk 〉 δg Nk ‖ 

J k ‖ 

, (74) 

here η ∈ [ −1 , 1] denotes the centroid point coordinate in the pa-

ameter space and J = 

∂x I 
0 c 

∂η
. The weight and coordinates of the k th 

ntegration point are denoted by w k and ηk , respectively. Given the

ection along M attached to x c (η) for which we solve the local

roblem of Eq. 17 , two surface points, x̄ M and x̄ N , are computed.

n Eq. 73 , r cek is expressed as: 

 cek = −εN 〈 −g N 〉 dg N 

d ̂  p 
e 

. (75) 

If the Automatic Differentiation (AD) formalism is employed

23,24] , the dependency of the local variables with respect to ˆ p 
e 

s well as relations of Eq. 63 can be directly incorporated as fol-

ows: 

g N = δḡ · n̄ 

I (76) 

= δx̄ 

J · n̄ 

I − δx̄ 

I · n̄ 

I (77) 

= 

( 

ˆ ∂ x 

J 

ˆ ∂ ̂  p 
e 

∣∣∣
∂ q 

∂ ̂ p e 
= A 

−
ˆ ∂ x 

I 

ˆ ∂ ̂  p 
e 

∣∣∣
∂ q 

∂ ̂ p e 
= 0 

) 

· n̄ 

I , (78) 

here operator 
ˆ ∂ �
ˆ ∂ w 

denotes the Automatic Differentiation (AD) of

unction � with respect to the variables in w ( [23,26] ) and the

echanism of AD exceptions is used to overwrite some partial

erivatives. 
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Fig. 6. Example 1: (a) Initial configuration; (b) configuration halfway through the loading, and (c) final configuration. 
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P

 

t  

t  

T  

a  

c  

[  
K 

cek 
, stemming for the contribution of the k th integration point

placed along h M 

1 
, can be obtained using AD as follows: 

K 

cek 
= 

ˆ ∂ r cek 

ˆ ∂ ̂  p 
e 

∣∣∣
∂ ̄q 

∂ ̂ p e 
= A 

. (79)

r c and K 

c 
, which contain the contributions of all contact elements

in set S , are obtained from: 

r c = A 

∑ 

e ∈ S 

n M 

IP ∑ 

k 

w k r cek = A 

∑ 

e ∈ S 
r ce , (80)

K 

c 
= A 

∑ 

e ∈ S 

n M 

IP ∑ 

k 

w k K 

cek 
= A 

∑ 

e ∈ S 
K 

ce 
. (81)

where A 

∑ 

denotes the finite-element assembly operator. Note

that the exception in differentiation in Eq. 81 allows to properly

linearise r cek such that the exception 

∂ q 

∂ ̂  p e 
= 0 in Eq. 78 is replaced

by 
∂ q 

∂ ̂  p e 
= A during linearization. 

3. Results 

In this section, the beam-inside-beam contact scheme is applied

to two numerical examples. First, a thin beam is pulled out from

another beam in which it is initially inserted. Second, a thin beam

is inserted in a curved beam. For these two examples, a single in-

tegration point is used to evaluate r ce and K 

ce 
in Eqs. 80 and 81 ,

respectively. 

In both examples, large relative displacements of the contact-

ing surfaces take place. This implies that for a contact element, if

projection point x̄ J lies on the surface of BFE M , this projection

might go off the bound of the surface ∂M . If this happens, projec-

tion point x̄ J should lie on an adjacent element’s surface, namely

the surface of element B 

M +1 or B 

M−1 . However, as two-node ge-

ometrically exact beam elements are employed, gaps and overlaps

of the different BFE’s surfaces are present if the beam is not ini-

tially straight. For this reason, it might be difficult or impossible to

define the new location of x̄ J . 

To palliate this problem, a dedicated surface smoothing tech-

nique was introduced in [29] . The resulting auxiliary surface has

C 1 -continuity which is convenient for contact treatment. This pro-

cedure is used in the following examples. 

Due to the discretization of the contact kinematics, a sud-

den loss of contact near the inlet and outlet of the outer beam

may result in loss of convergence. The methodology presented

in Appendix A is therefore adopted in the following examples to

avoid these complications. 
.1. Example 1: Pull out 

In the first example, two elastic beams with the same initial

entroid-line form a part of a helix ( Fig. 6 a). They have the same

entroid-line as a parameterized helix. The outer beam is hol-

ow with an elliptical cross-section defined by a = 22 . 3 mm and

 = 17 . 8 mm . Its wall thickness is 0.2 mm. Its Young’s modulus is

et to E = 0 . 15 MPa [20] and 75 BFEs are employed to discretize it.

he thin beam has an elliptical section with semi-axes a = 3 . 9 mm

s set to and b = 3 mm . It is stiffer than the hollow beam as its

oung’s modulus is set to E = 1 . 5 MPa . Its Poisson’s ratio is set

o ν = 0 . 3 and it is discretized with 100 BFEs. A penalty stiff-

ess of 1 N / m is used. The displacements and rotations of both end

odes of the outer beam are restrained. One end of the thin beam

s pulled away from the outer beam by 1200 mm in 300 equally

paced increments. 

Contact interactions substantially deform the thin beam,

 Fig. 6 b). As the (prescribed) end node of the thin beam contin-

es to move away from the outer beam, sliding of the contacting

urfaces occurs until the final configuration is reached (Fig 6 c).

s the prescribed beam deforms and moves along the outer beam,

he number of penetrated sections changes ( Fig. 7 ). The compo-

ents of the reaction force and torque at the prescribed end of the

hin beam are reported in Fig. 8 a and Fig. 8 b, respectively. 

.2. Example 2: Insertion 

The second example involves an initially straight thin beam that

s pushed in a hollow, largely circular beam (see Fig. 9 ). Initially,

nly a small part of the thin beam is inserted in the hollow one.

he kinematic variables of the outer beam’s end node near the

hin beam are restrained. The z-displacement of the inner beam’s

nd node furthest away from the outer beam is prescribed to reach

70 mm in 300 increments, whilst the other kinematic variables at

his end node are restrained. 

This inner beam has a length of 54 cm, and a Young’s modu-

us of 1.5 MPa. The cross sectional shape is given by a = 5 . 4 mm

nd b = 4 . 3 mm . The outer hollow beam is more compliant with

 = 0 . 15 MPa . Its wall thickness is 1 mm and its cross-sectional

emi-axes are a = 20 mm and b = 16 mm . 100 and 180 BFEs are

mployed to discretize the inner and outer beam, respectively. The

oisson’s ratio of both beams is set to 0.33. 

Both structures deform due to contact, see Fig. 10 . Fig. 11 shows

hat numerous sections of the inner beam penetrate the wall of

he outer beam, which indicates that the contact is non-localized.

his confirms that in the present case, as well as for the first ex-

mple, contact cannot be described by a single force acting at the

losest pair of surface points. Master-master contact frameworks

12–14,41,43] where bi-orthogonality equations must be solved to
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Fig. 7. Example 1: top: number of global iterations to reach the convergence criteria 
∥∥ f 

int 
+ r c − f 

ext 

∥∥ < 10 −8 ; bottom: number of penetrated sections as a function of the 

displacement of the end node of the thin beam. The peak in the number of iterations corresponds to the sliding of a cross-section of the slave beam in contact out of the 

hollow beam. The peak in the number of iterations corresponds to the sliding of a cross-section of the slave beam in contact out of the hollow beam. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Example 1: (a) components of the reaction force and (b) reaction torque at the prescribed end of the thin beam. 

Fig. 9. Example 2: Initial configuration. 

d  

a  

i  

c  

f  

c  

v  

t  

r  

n

 

i  

t  

t  

s  

t  

t  

t

 

A  

a  

(  

n

M

 

d  
etermine the contact location are difficult to apply in these situ-

tions. The reason is that they rely on the determination of a min-

mum of a distance function that is almost constant if surfaces are

lose to each other on a finite region. The top diagram of Fig. 11 ,

urthermore, shows that only a few iterations are required to reach

onvergence. This was the same as for the first example, as re-

ealed in the top diagram of Fig. 7 . The force-displacement and

orque-displacement diagrams of Fig. 12 clearly show that different
egimes are present, where each regime is governed by a different

umber of contact areas. 

In the current example, the Young’s modulus of the inner beam

s ten times larger than that of the outer beam. To demonstrate

hat the framework is also robust for an entirely different ra-

io of Young’s moduli, the example is repeated with exactly the

ame geometrical, material and numerical parameters, except for

he Young’s modulus of the inner beam. Instead of 1.5 MPa, we set

he modulus to 150 MPa such that it is thousand times larger than

hat of the outer beam. 

The figures for this additional test case are reported in

ppendix B . They show that, although the predicted deformations

s well as the force- and torque-curves are completely different

cf. Figs. 10 , 11 and 12 ), the maximum number of iterations is again

ot more than two. 

esh convergence study 

The second example is repeated with different meshes in or-

er to show that the results converge to the same solution. For the
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Fig. 10. Example 2: (a) Initial configuration; (b) configuration halfway through the loading, and (c) final configuration. 

Fig. 11. Example 2: Top: number of global iterations to reach convergence criteria: ∥∥ f 
int 

+ r c − f 
ext 

∥∥ < 10 −8 ; Bottom: evolution of the number of contact interactions 

between sections of the thin beam and the surface of the outer beam. 
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different meshes, the displacement field of the inner beam is com-

pared to a reference solution, which is obtained with 180 elements

for the inner beam. Figs. a and b show that the displacement fields

converge to the reference displacement fields. 
Fig. 12. Example 2: components of the reaction force (a) an
. Discussion 

The beam-inside-beam contact framework presented in this

ontribution is the first approach to ensure that an inner beam re-

ains embedded inside an outer, hollow beam because all existing

ontact frameworks for beams aim to achieve the opposite: they

epel beams from each other. 

The advantage of using beams in surgical simulations over con-

entional 3D finite elements is the potential to achieve faster sim-

lations (although our particular implementation can surely not

ompete with frameworks such as SOFA [11] ). The disadvantage

f using beams over conventional finite elements is a reduction

f the simulation accuracy. Hence, the framework proposed in

his contribution may be perceived to be beneficial if simulation

peed is preferred over simulation accuracy. On the other hand,

ur framework can handle slender medical instruments with both

ircular and elliptical cross-sections, whereas the frameworks of

1,9,15,27,39] have only been demonstrated to handle circular ones.

he reason that beams, formulated to rapidly simulate the me-

hanical behavior of slender bodies, are faster for mechanical sim-

lations involving contact is twofold. First, beams come with fewer

egrees of freedom (i.e. kinematic variables) than if the tubes’ sur-

aces are represented by conventional finite elements, because in

ost beam theories the beams’ cross-sections are rigid ( i.e. the

ross-sections cannot deform). Hence, the entire beam’s geome-
d torque (b) at the prescribed end of the thin beam. 
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Fig. 13. Effect of the mesh refinement on the final displacement of the nodes of the thin beam. The displacements in the final configuration are compared to the ones with 

the finest mesh (180 nodes) (a) Difference of the Y -displacements ; (b) Difference of the Z-displacements. 
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the end of the outer beam is detached from the surface of the 

Fig. 14. Sliding of the inner beam outside the limits of the outer beam. Penetrated 

sections are shown in red. At increment n , the last section placed along the inner 

beam is still inside the cavity. At increment n + 1 , it has slid outside the cavity. 

Bottom left: If no treatment is applied, the contact point at the tip of the inner 

beam is deactivated and it results in a sudden loss of contact; bottom right: the 

additional constraint is enforced between the section at the end of the outer beam 

(in red) and the surface of the inner beam. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
ry can be constructed from its centroid line description and the

ross-sections’ orientation. This drastically reduces the number of

egrees of freedom necessary to discretise a slender body. Second,

nd seemingly even more important is the fact that the penetra-

ion can be quantified for an entire (rigid) cross-section at once,

hich drastically reduces the number of local problems that needs

o be solved. 

One possible extension of the beam-inside-beam contact frame-

ork is the incorporation of fluid flows inside the hollow beam to

epresent blood flow in case of arteries and veins. Frictional slid-

ng between the inner and outer beam also seems like a necessary

xtension for the future. Surrounding tissues were furthermore ne-

lected in the presented simulations, which did not focus on a par-

icular type of intervention in order to highlight the generality of

he framework. 

The accuracy of the framework is not as high as that of the

rameworks presented in [9,19,27,39] . However, simulation speed

nd simulation accuracy are two competing interests and if speed

s preferred over accuracy, our new framework is a promising al-

ernative to existing frameworks. 
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ppendix A. Treatment of contact at the ends of the outer 

eam. 

In the numerical examples of Section 3 , the section at the tip of

he inner beam slides along the wall of the outer beam until it ex-

ts the outer beam (first two images in Fig. 14 ). The occurrence of
his is monitored, because when it occurs, the contact constraint

etween the section attached to the last integration point of the

nner beam and the outer beam must be deactivated and the in-

rement repeated. Then, no contact interactions to embed the in-

er beam inside the outer beam may be left. If this is the case,

 sudden release of the inner beam may occur which makes the

imulation diverge (bottom left in Fig. 14 ). 

To avoid this, an additional constraint is added to the outlet of

he hollow beam. It enforces the section at the edge of the outer

eam to be in contact with the surface of the inner beam (bot-

om right in Fig. 14 ). The local problem to that must be solved

o quantify penetration is again given by Eq. 17 , except that this

ime B 

I denotes the outer beam and B 

J the inner one. The method

f Lagrange multipliers is used to enforce this constraint. The rea-

on is that if the penalty method is employed and the section at

https://doi.org/10.13039/501100000780
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Fig. 15. Example 2 with a stiffer inner beam: (a) Initial configuration; (b) configu- 

ration halfway through the loading, and (c) final configuration. 
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(a)

Fig. 16. Example 2 with a stiffer inner beam: Top: number of global iterations to reach 

contact interactions between sections of the thin beam and the surface of the outer beam
nner beam, even with the constraint just added, no penetration

s detected and the sudden release of the inner tube would not be

voided. 

Ideally, a contact at the closest pair of surface points

12,13] should be applied at the tip of the inner beam in Fig. 14 .

n this case, the treatment discussed in this session would not be

equired. However, this necessitates a framework able to automat-

cally decide which type of contact element to use, as in the ABC

ormulation of Meier et al. [32] . The development of such a frame-

ork for shear-deformable beams with elliptical cross-sections re-

ains for future work. 

ppendix B. Figures for Example 2 with E = 150 MPa for the 

nner beam. 
(b)
convergence criteria: 

∥∥ f 
int 

+ r c − f 
ext 

∥∥ < 10 −8 ; Bottom: evolution of the number of 

. 
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Fig. 17. Example 2 with a stiffer inner beam: components of the reaction force (a) and torque (b) at the prescribed end of the thin beam. 
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