Article (Périodiques scientifiques)
Speech Based Estimation of Parkinson’s Disease Using Gaussian Processes and Automatic Relevance Determination
DESPOTOVIC, Vladimir; Skovranek, Tomas; SCHOMMER, Christoph
2020In Neurocomputing, 401, p. 173-181
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
manuscript.pdf
Postprint Auteur (492.35 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Speech disorder; Parkinson’s disease; Machine learning; Gaussian processes; Feature selection
Résumé :
[en] Parkinson’s disease is a progressive neurodegenerative disorder often accompanied by impairment in articulation, phonation, prosody and fluency of speech. In fact, speech impairment is one of the earliest Parkinson’s disease symptoms, and may be used for early diagnosis. We present an experimental study of identification of Parkinson’s disease and assessment of disease progress from speech using Gaussian processes, which is further combined with Automatic Relevance Determination (ARD) for efficient feature selection. Hyperparameters of ARD covariance functions are learned for each individual feature; therefore, can be used for evaluation of their importance. In that way only a small subset of highly relevant acoustic features is selected, leading to models with better performance and lower complexity. The performance of the proposed method was assessed on two datasets: Parkinson’s disease detection dataset, which contains a range of biomedical voice measurements obtained from 31 subjects, 23 of them suffering from Parkinson’s disease and 8 healthy subjects; and Parkinson’s telemonitoring dataset, containing biomedical voice measurements collected from 42 Parkinson’s disease patients for estimation of the disease progress. Gaussian process classification with automatic relevance determination is able to successfully discriminate between Parkinson’s disease patients and healthy controls with 96.92% accuracy, outperforming Support Vector Machines and decision tree ensembles (random forests, boosted and bagged decision trees). The usability of Gaussian processes is further confirmed in regression task for tracking the progress of the disease.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DESPOTOVIC, Vladimir ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Skovranek, Tomas;  Technical University of Kosice > BERG Faculty
SCHOMMER, Christoph  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Speech Based Estimation of Parkinson’s Disease Using Gaussian Processes and Automatic Relevance Determination
Date de publication/diffusion :
2020
Titre du périodique :
Neurocomputing
ISSN :
0925-2312
eISSN :
1872-8286
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
401
Pagination :
173-181
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 03 avril 2020

Statistiques


Nombre de vues
260 (dont 23 Unilu)
Nombre de téléchargements
5 (dont 4 Unilu)

citations Scopus®
 
64
citations Scopus®
sans auto-citations
62
OpenCitations
 
21
citations OpenAlex
 
58
citations WoS
 
46

Bibliographie


Publications similaires



Contacter ORBilu