Article (Périodiques scientifiques)
Selecting fault revealing mutants
TITCHEU CHEKAM, Thierry; PAPADAKIS, Mike; BISSYANDE, Tegawendé François D Assise et al.
2019In Empirical Software Engineering, p. 1-54
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TitcheuChekam2019_Article_SelectingFaultRevealingMutants.pdf
Postprint Éditeur (3.35 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mutation testing; Machine learning; Mutant selection; Mutant prioritization
Résumé :
Mutant selection refers to the problem of choosing, among a large number of mutants, the (few) ones that should be used by the testers. In view of this, we investigate the problem of selecting the fault revealing mutants, i.e., the mutants that are killable and lead to test cases that uncover unknown program faults. We formulate two variants of this problem: the fault revealing mutant selection and the fault revealing mutant prioritization. We argue and show that these problems can be tackled through a set of ‘static’ program features and propose a machine learning approach, named FaRM, that learns to select and rank killable and fault revealing mutants. Experimental results involving 1,692 real faults show the practical benefits of our approach in both examined problems. Our results show that FaRM achieves a good trade-off between application cost and effectiveness (measured in terms of faults revealed). We also show that FaRM outperforms all the existing mutant selection methods, i.e., the random mutant sampling, the selective mutation and defect prediction (mutating the code areas pointed by defect prediction). In particular, our results show that with respect to mutant selection, our approach reveals 23% to 34% more faults than any of the baseline methods, while, with respect to mutant prioritization, it achieves higher average percentage of revealed faults with a median difference between 4% and 9% (from the random mutant orderings).
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Security Design and Validation Research Group (SerVal)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TITCHEU CHEKAM, Thierry ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PAPADAKIS, Mike ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
Sen, Koushik;  Berkeley University of California - UC Berkeley
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Selecting fault revealing mutants
Date de publication/diffusion :
18 décembre 2019
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Springer, Etats-Unis
Pagination :
1-54
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
URL complémentaire :
Projet FnR :
FNR11686509 - Continuous Development With Mutation Analysis And Testing, 2017 (01/09/2018-31/08/2021) - Michail Papadakis
Intitulé du projet de recherche :
CODEMATES
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 17 février 2020

Statistiques


Nombre de vues
749 (dont 80 Unilu)
Nombre de téléchargements
808 (dont 40 Unilu)

citations Scopus®
 
52
citations Scopus®
sans auto-citations
36
OpenCitations
 
24
citations OpenAlex
 
67
citations WoS
 
49

Bibliographie


Publications similaires



Contacter ORBilu