Article (Périodiques scientifiques)
Using Machine Learning to Assist with the Selection of Security Controls During Security Assessment
BETTAIEB, Seifeddine; SHIN, Seung Yeob; SABETZADEH, Mehrdad et al.
2020In Empirical Software Engineering, 25 (4), p. 2550–2582
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
EMSEPreprint.pdf
Preprint Auteur (577.08 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Security Requirements Engineering; Security Assessment; Automated Decision Support; Machine Learning
Résumé :
[en] In many domains such as healthcare and banking, IT systems need to fulfill various requirements related to security. The elaboration of security requirements for a given system is in part guided by the controls envisaged by the applicable security standards and best practices. An important difficulty that analysts have to contend with during security requirements elaboration is sifting through a large number of security controls and determining which ones have a bearing on the security requirements for a given system. This challenge is often exacerbated by the scarce security expertise available in most organizations. [Objective] In this article, we develop automated decision support for the identification of security controls that are relevant to a specific system in a particular context. [Method and Results] Our approach, which is based on machine learning, leverages historical data from security assessments performed over past systems in order to recommend security controls for a new system. We operationalize and empirically evaluate our approach using real historical data from the banking domain. Our results show that, when one excludes security controls that are rare in the historical data, our approach has an average recall of ≈ 94% and average precision of ≈ 63%. We further examine through a survey the perceptions of security analysts about the usefulness of the classification models derived from historical data. [Conclusions] The high recall – indicating only a few relevant security controls are missed – combined with the reasonable level of precision – indicating that the effort required to confirm recommendations is not excessive – suggests that our approach is a useful aid to analysts for more efficiently identifying the relevant security controls, and also for decreasing the likelihood that important controls would be overlooked. Further, our survey results suggest that the generated classification models help provide a documented and explicit rationale for choosing the applicable security controls.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BETTAIEB, Seifeddine ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHIN, Seung Yeob  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Garceau, Michael
Meyers, Antoine
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Using Machine Learning to Assist with the Selection of Security Controls During Security Assessment
Date de publication/diffusion :
2020
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Springer, Pays-Bas
Volume/Tome :
25
Fascicule/Saison :
4
Pagination :
2550–2582
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Alphonse Weicker Foundation
Disponible sur ORBilu :
depuis le 24 janvier 2020

Statistiques


Nombre de vues
436 (dont 61 Unilu)
Nombre de téléchargements
577 (dont 24 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
13
OpenCitations
 
2
citations OpenAlex
 
13
citations WoS
 
10

Bibliographie


Publications similaires



Contacter ORBilu