[en] We consider the Galois representation associated with a finite slope, non-CM p-adic family of Hecke eigenforms, and prove that the Lie algebra of its image contains a congruence Lie subalgebra of non-trivial level. We describe the largest such level in terms of the congruences of the family with p-adic CM eigenforms.
Disciplines :
Mathématiques
Auteur, co-auteur :
CONTI, Andrea ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Tilouine, Jacques; Université Paris 13 > Mathematics > LAGA > Professor
Iovita, Adrian; Concordia University - Università di Padova > Mathematics > Professor
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Big image of Galois representations associated with finite slope p-adic families of modular forms
Date de publication/diffusion :
2016
Nom de la manifestation :
Elliptic Curves, Modular Forms and Iwasawa Theory: In Honour of John H. Coates' 70th Birthday
Lieu de la manifestation :
Cambridge, Royaume-Uni
Date de la manifestation :
March 2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
Elliptic Curves, Modular Forms and Iwasawa Theory: In Honour of John H. Coates' 70th Birthday
Auteur, co-auteur :
Loeffler, David
Zerbes, Sarah Livia
Maison d'édition :
Springer
Collection et n° de collection :
Springer Proceedings in Mathematics & Statistics, 188