Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Deep learning based semantic situation awareness system for multirotor aerial robots using LIDAR
SANCHEZ LOPEZ, Jose Luis; Sampedro, Carlos; CAZZATO, Dario et al.
2019In 2019 International Conference on Unmanned Aircraft Systems (ICUAS)
Peer reviewed
 

Documents


Texte intégral
sanchez-lopez2019.pdf
Postprint Éditeur (388.84 kB)
Demander un accès
Parties de texte intégral
root.pdf
Preprint Auteur (10.04 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Aerial robots; situation awareness; deep learning
Résumé :
[en] In this work, we present a semantic situation awareness system for multirotor aerial robots, based on 2D LIDAR measurements, targeting the understanding of the environment and assuming to have a precise robot localization as an input of our algorithm. Our proposed situation awareness system calculates a semantic map of the objects of the environment as a list of circles represented by their radius, and the position and the velocity of their center in world coordinates. Our proposed algorithm includes three main parts. First, the LIDAR measurements are preprocessed and an object segmentation clusters the candidate objects present in the environment. Secondly, a Convolutional Neural Network (CNN) that has been designed and trained using an artificially generated dataset, computes the radius and the position of the center of individual circles in sensor coordinates. Finally, an indirect-EKF provides the estimate of the semantic map in world coordinates, including the velocity of the center of the circles in world coordinates.We have quantitative and qualitative evaluated the performance of our proposed situation awareness system by means of Software-In-The-Loop simulations using VRep with one and multiple static and moving cylindrical objects in the scene, obtaining results that support our proposed algorithm. In addition, we have demonstrated that our proposed algorithm is capable of handling real environments thanks to real laboratory experiments with non-cylindrical static (i.e. a barrel) and moving (i.e. a person) objects.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Sampedro, Carlos
CAZZATO, Dario ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Deep learning based semantic situation awareness system for multirotor aerial robots using LIDAR
Date de publication/diffusion :
juin 2019
Nom de la manifestation :
2019 International Conference on Unmanned Aircraft Systems (ICUAS)
Date de la manifestation :
from 12-06-2019 to 14-06-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
2019 International Conference on Unmanned Aircraft Systems (ICUAS)
Edition :
2019
Pagination :
899-908
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 13 décembre 2019

Statistiques


Nombre de vues
177 (dont 9 Unilu)
Nombre de téléchargements
212 (dont 9 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
7

Bibliographie


Publications similaires



Contacter ORBilu