Article (Périodiques scientifiques)
Sparse classification with paired covariates
RAUSCHENBERGER, Armin; Ciocănea-Teodorescu, Iuliana; Jonker, Marianne A. et al.
2020In Advances in Data Analysis and Classification, 14, p. 571–588
Peer reviewed
 

Documents


Texte intégral
Rauschenberger2019_Paired_Lasso.pdf
Postprint Éditeur (706.59 kB)
Sparse classification with paired covariates
Télécharger
Annexes
Rauschenberger2019_Appendix.pdf
(1.45 MB)
Appendix
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
prediction; sparsity; lasso regression; paired data
Résumé :
[en] This paper introduces the paired lasso: a generalisation of the lasso for paired covariate settings. Our aim is to predict a single response from two high-dimensional covariate sets. We assume a one-to-one correspondence between the covariate sets, with each covariate in one set forming a pair with a covariate in the other set. Paired covariates arise, for example, when two transformations of the same data are available. It is often unknown which of the two covariate sets leads to better predictions, or whether the two covariate sets complement each other. The paired lasso addresses this problem by weighting the covariates to improve the selection from the covariate sets and the covariate pairs. It thereby combines information from both covariate sets and accounts for the paired structure. We tested the paired lasso on more than 2000 classification problems with experimental genomics data, and found that for estimating sparse but predictive models, the paired lasso outperforms the standard and the adaptive lasso. The R package palasso is available from CRAN.
Centre de recherche :
Amsterdam UMC, VU University Amsterdam, Department of Epidemiology and Biostatistics
University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Mathématiques
Auteur, co-auteur :
RAUSCHENBERGER, Armin ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) ; Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
Ciocănea-Teodorescu, Iuliana;  Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
Jonker, Marianne A.;  Radboud University Medical Center, Nijmegen, The Netherlands
Menezes, Renée X.;  Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
van de Wiel, Mark A.;  Amsterdam UMC, VU University Amsterdam, The Netherlands ; MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Sparse classification with paired covariates
Date de publication/diffusion :
2020
Titre du périodique :
Advances in Data Analysis and Classification
Volume/Tome :
14
Pagination :
571–588
Peer reviewed :
Peer reviewed
Focus Area :
Systems Biomedicine
Commentaire :
https://CRAN.R-project.org/package=palasso
Disponible sur ORBilu :
depuis le 07 décembre 2019

Statistiques


Nombre de vues
211 (dont 24 Unilu)
Nombre de téléchargements
104 (dont 4 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
2
OpenCitations
 
3
citations OpenAlex
 
7
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu