[en] By combining atomistic and higher-level modelling with solution X-ray diffraction we analyse self-assembly pathways for the IFQINS hexapeptide, a bio-relevant amyloid former derived from human lysozyme. We verify that (at least) two metastable polymorphic structures exist for this system which are substantially different at the atomistic scale, and compare the conditions under which they are kinetically accessible. We further examine the higher-level polymorphism for these systems at the nanometre to micrometre scales, which is manifested in kinetic differences and in shape differences between structures instead of or as well as differences in the small-scale contact topology. Any future design of structure based inhibitors of the IFQINS steric zipper, or of close homologues such as TFQINS which are likely to have similar structures, should take account of this polymorphic assembly.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physique
Auteur, co-auteur :
HAKAMI ZANJANI, Ali Asghar ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Reynolds, Nicholas; Swinburne University of Technology > ARC Training Centre for Biodevices
Zhang, Afang; Shanghai University > Department of Polymer Materials