Dmitri Alekseevski, Self-similar Lorentzian manifolds, Ann. Global Anal. Geom. 3 (1985), no. 1, 59-84. MR 812313, DOI 10.1007/BF00054491
A. M. Amores, Vector fields of a finite type -structure, J. Differential Geometry 14 (1979), no. 1, 1-6 (1980). MR 577874
Scot Adams and Garrett Stuck, The isometry group of a compact Lorentz manifold. I, II, Invent. Math. 129 (1997), no. 2, 239-261, 263-287. MR 1465326, DOI 10.1007/s002220050163
Scot Adams and Garrett Stuck, The isometry group of a compact Lorentz manifold II, Inv. Math. 129 (1997), no. 2, 263-287.
Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. MR 972342
Uri Bader and Amos Nevo, Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds, J. Differential Geom. 60 (2002), no. 3, 355-387. MR 1950171
Andreas Čap and Karin Melnick, Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. 62 (2013), no. 6, 1917-1953. MR 3205536, DOI 10.1512/iumj.2013.62.5166
Andreas Čap and Jan Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. Background and general theory. MR 2532439, DOI 10.1090/surv/154
G. D’Ambra, Isometry groups of Lorentz manifolds, Invent. Math. 92 (1988), no. 3, 555-565. MR 939475, DOI 10.1007/BF01393747
Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
G. D’Ambra and M. Gromov, Lectures on transformation groups: Geometry and dynamics, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp 19-111. MR 1144526
Charles Frances and Karin Melnick, Conformal actions of nilpotent groups on pseudo-Riemannian manifolds, Duke Math. J. 153 (2010), no. 3, 511-550. MR 2667424, DOI 10.1215/00127094-2010-030
Charles Frances and Karin Melnick, Formes normales pour les champs conformes pseudo-riemanniens, Bull. Soc. Math. France 141 (2013), no. 3, 377-421 (French, with English and French summaries). MR 3157055, DOI 10.24033/bsmf.2652
Charles Frances, Lorentzian Kleinian groups, Comment. Math. Helv. 80 (2005), no. 4, 883-910. MR 2182704, DOI 10.4171/CMH/38
Charles Frances, Causal conformal vector fields, and singularities of twistor spinors, Ann. Global Anal. Geom. 32 (2007), no. 3, 277-295. MR 2336178, DOI 10.1007/s10455-007-9060-1
Charles Frances, Dégénerescence locale des transformations conformes pseudo-riemanniennes, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1627-1669 (French, with English and French summaries). MR 3025150, DOI 10.5802/aif.2732
Charles Frances, Local dynamics of conformal vector fields, Geom. Dedicata 158 (2012), 35-59. MR 2922702, DOI 10.1007/s10711-011-9619-7
C. Frances, About pseudo-Riemannian Lichnerowicz conjecture, Transform. Groups 20 (2015), no. 4, 1015-1022. MR 3416437, DOI 10.1007/s00031-015-9317-x
Charles Frances and Abdelghani Zeghib, Some remarks on conformal pseudo-Riemannian actions of simple Lie groups, Math. Res. Lett. 12 (2005), no. 1, 49-56. MR 2122729, DOI 10.4310/MRL.2005.v12.n1.a5
Claude Godbillon, Feuilletages, Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991 (French). Études géométriques. [Geometric studies]; With a preface by G. Reeb. MR 1120547
Michael Gromov, Rigid transformations groups, Géométrie différentielle (Paris, 1986) Travaux en Cours, vol. 33, Hermann, Paris, 1988, pp 65-139. MR 955852
André Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248-329 (French). MR 100269, DOI 10.1007/BF02564582
Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083, DOI 10.1007/978-1-4757-2453-0
Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR 1336823
Jacqueline Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8 (2) 39 (1971), no. 5, 44 (French). MR 322739
Jacqueline Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), no. 2, 277-291. MR 1371767, DOI 10.1007/BF01446294
Karin Melnick, A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. (2) 57 (2011), no. 1-2, 57-89. MR 2850584, DOI 10.4171/LEM/57-1-3
Dave Witte Morris, Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005. MR 2158954
Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247-258. MR 303464
V. Pecastaing, Semi-simple Lie groups acting conformally on compact Lorentz manifolds, arXiv:1506.08693, 2015.
Vincent Pecastaing, On two theorems about local automorphisms of geometric structures, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 1, 175-208 (English, with English and French summaries). MR 3477874
Vincent Pecastaing, Lorentzian manifolds with a conformal action of, Comment. Math. Helv. 93 (2018), no. 2, 401-439. MR 3811757, DOI 10.4171/CMH/439
V. Pecastaing, Conformal actions of real-rank 1 simple Lie groups on pseudo-Riemannian manifolds, Transform. Groups 24 (2019), no. 4, 1213-1239. MR 4038091, DOI 10.1007/s00031-019-09527-6
I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 0366917
R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program; With a foreword by S. S. Chern. MR 1453120
Gerald Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol. 140, American Mathematical Society, Providence, RI, 2012. MR 2961944, DOI 10.1090/gsm/140
Abdelghani Zeghib, The identity component of the isometry group of a compact Lorentz manifold, Duke Math. J. 92 (1998), no. 2, 321-333. MR 1612793, DOI 10.1215/S0012-7094-98-09208-0
Abdelghani Zeghib, Sur les espaces-temps homogènes, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp 551-576 (French, with English summary). MR 1668344, DOI 10.2140/gtm.1998.1.551
A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics, Geom. Funct. Anal. 9 (1999), no. 4, 775-822. MR 1719606, DOI 10.1007/s000390050102
A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal. 9 (1999), no. 4, 823-854. MR 1719610, DOI 10.1007/s000390050103
Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4