Learning to Rank; Ontology Reuse; Web of Things; Linked Vocabularies; Semantic Interoperability
Résumé :
[en] Efficient ontology reuse is a key factor in the Semantic Web to enable and enhance the interoperability of computing systems. One important aspect of ontology reuse is concerned with ranking most relevant ontologies based on a keyword query. Apart from the semantic match of query and ontology, the state-of-the-art often relies on ontologies' occurrences in the Linked Open Data (LOD) cloud to determine relevance. We observe that ontologies of some application domains, in particular those related to Web of Things (WoT), often do not appear in the underlying LOD datasets used to define ontologies' popularity, resulting in ineffective ranking scores. This motivated us to investigate - based on the problematic WoT case - whether the scope of ranking models can be extended by relying on qualitative attributes instead of an explicit popularity feature. We propose a novel approach to ontology ranking by (i) selecting a range of relevant qualitative features, (ii) proposing a popularity measure for ontologies based on scholarly data, (iii) training a ranking model that uses ontologies' popularity as prediction target for the relevance degree, and (iv) confirming its validity by testing it on independent datasets derived from the state-of-the-art. We find that qualitative features help to improve the prediction of the relevance degree in terms of popularity. We further discuss the influence of these features on the ranking model.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KOLBE, Niklas ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KUBLER, Sylvain ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; Université de Lorraine > Research Center for Automatic Control
LE TRAON, Yves ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Popularity-driven Ontology Ranking using Qualitative Features
Date de publication/diffusion :
2019
Nom de la manifestation :
18th International Semantic Web Conference
Date de la manifestation :
26/10/2019 - 30/10/2019
Titre de l'ouvrage principal :
The Semantic Web - ISWC 2019
Peer reviewed :
Peer reviewed
Projet européen :
H2020 - 688203 - bIoTope - Building an IoT OPen innovation Ecosystem for connected smart objects
Andročec, D., Novak, M., Oreški, D.: Using semantic web for internet of things interoperability: a systematic review. Int. J. Semant. Web Inf. Syst. (IJSWIS) 14(4), 147–171 (2018). https://doi.org/10.4018/IJSWIS.2018100108
Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
Bakerally, N., Boissier, O., Zimmermann, A.: Smart city artifacts web portal. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 172–177. Springer, Cham (2016). https://doi.org/10. 1007/978-3-319-47602-5 34
Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012). https://doi.org/10.4018/jswis.2012010101
Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)
Butt, A.S.: Ontology search: finding the right ontologies on the web. In: Proceedings of the 24th International Conference on World Wide Web, pp. 487–491. ACM (2015). https://doi.org/10.1145/2740908.2741753
Butt, A.S., Haller, A., Xie, L.: Ontology search: an empirical evaluation. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 130–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1 9
Butt, A.S., Haller, A., Xie, L.: DWRank: learning concept ranking for ontology search. Semant. Web 7(4), 447–461 (2016). https://doi.org/10.3233/SW-150185
Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 621–630. ACM (2009). https://doi.org/10.1145/1645953.1646033
Espinoza-Arias, P., Poveda-Villalón, M., García-Castro, R., Corcho, O.: Ontological representation of smart city data: from devices to cities. Appl. Sci. 9(1), 32 (2019). https://doi.org/10.3390/app9010032
Fernández-López, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Ontology development by reuse. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 147–170. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24794-1 7
Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: Lov4iot: a second life for ontology-based domain knowledge to build semantic web of things applications. In: IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 254–261. IEEE (2016). https://doi.org/10.1109/FiCloud.2016.44
Gyrard, A., Zimmermann, A., Sheth, A.: Building IoT-based applications for smart cities: how can ontology catalogs help? IEEE Internet Things J. 5(5), 3978–3990 (2018). https://doi.org/10.1109/JIOT.2018.2854278
Katsumi, M., Grüninger, M.: Choosing ontologies for reuse. Appl. Ontol. 12(3–4), 195–221 (2017). https://doi.org/10.3233/AO-160171
Kolbe, N., Kubler, S., Robert, J., Le Traon, Y., Zaslavsky, A.: Linked vocabulary recommendation tools for internet of things: a survey. ACM Comput. Surv. (CSUR) 51(6), 127 (2019). https://doi.org/10.1145/3284316
Kolchin, M., et al.: Ontologies for web of things: a pragmatic review. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2015. CCIS, vol. 518, pp. 102–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24543-0 8
Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009). https://doi.org/10.1007/978-3-642-14267-3
Martínez-Romero, M., Jonquet, C., O’Connor, M.J., Graybeal, J., Pazos, A., Musen, M.A.: NCBO ontology recommender 2.0: an enhanced approach for biomedical ontology recommendation. J. Biomed. Semant. 8(1), 21 (2017). https://doi.org/10.1186/s13326-017-0128-y
McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache Lucene 3.0. Manning Publications Co., Shelter Island (2010). ISBN 1933988177
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab (1999)
Poveda Villalón, M., García Castro, R., Gómez-Pérez, A.: Building an ontology catalogue for smart cities, pp. 829–839. CRC Press (2014)
Robertson, S.E.: Overview of the Okapi projects. J. Doc. 53(1), 3–7 (1997). https://doi.org/10.1108/EUM0000000007186
Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology selection: ontology evaluation on the real semantic web. In: 4th International Workshop on Evaluation of Ontologies for the Web (2006)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988). https://doi.org/10.1016/0306-4573(88)90021-0
Schaible, J., Gottron, T., Scherp, A.: Survey on common strategies of vocabulary reuse in linked open data modeling. In: Presutti, V., et al. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6 31
Schaible, J., Gottron, T., Scherp, A.: TermPicker: enabling the reuse of vocabulary terms by exploiting data from the linked open data cloud. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 101–117. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3 7
Simperl, E.: Reusing ontologies on the semantic web: a feasibility study. Data Knowl. Eng. 68(10), 905–925 (2009). https://doi.org/10.1016/j.datak.2009.02.002
Stadtmüller, S., Harth, A., Grobelnik, M.: Accessing information about linked data vocabularies with vocab.cc. In: Li, J., Qi, G., Zhao, D., Nejdl, W., Zheng, H.T. (eds.) Semantic Web and Web Science. Springer, New York (2013). https://doi. org/10.1007/978-1-4614-6880-6 34
Stavrakantonakis, I., Fensel, A., Fensel, D.: Linked open vocabulary ranking and terms discovery. In: Proceedings of the 12th International Conference on Semantic Systems, pp. 1–8. ACM (2016). https://doi.org/10.1145/2993318.2993338
Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked open vocabularies (LOV): a gateway to reusable semantic vocabularies on the web. Semant. Web 8(3), 437–452 (2017). https://doi.org/10.3233/SW-160213
Wu, G., Li, J., Feng, L., Wang, K.: Identifying potentially important concepts and relations in an ontology. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 33–49. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1 3
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016). https://doi. org/10.3233/SW-150175