Présentation scientifique dans des universités ou centres de recherche (Présentations scientifiques dans des universités ou centres de recherche)
Are Cox Regression Models a Valuable Tool for Social Stratification Research on Health? A Simulation Study.
PROCOPIO, Alessandro; SAMUEL, Robin
2019
 

Documents


Texte intégral
Presentation - Zagreb.pdf
Postprint Éditeur (1.38 MB)
Télécharger
Annexes
Abstract_Joint_Modeling.pdf
(89.22 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Social Stratification; Health Inequalities; Cox Regression Model; Monte Carlo Simulation; Estimation Biases
Résumé :
[en] In our contribution, we assess the possibilities and limits of Cox regression models in social stratification research in the area of health. We are motivated by the need for a structured analytical strategy through which researchers can deal with health inequality. Previous findings suggest considering health as a relevant resource but also one, which is unequally distributed among the members of a population. Along these lines, we focus on the inequality of risks distribution and the social stratification of (non) access to health as a resource. Using the substantive example of health inequality, we perform five Monte Carlo simulations in constructed longitudinal data. Each setting simulates a different source of bias. Specifically: a) Measurement error (misspecification of time measurement); b) Linear dependency between class of origin, destination and mobility effects; c) Omitted variables bias; d) Disentangle of timing/probability effects, namely speed/overall occurrence likelihood of an event; and e) Unobserved heterogeneity among groups. The health-related risks approach in analysing health inequalities has a twofold advantage: a) it splits the health outcome in a true differential and in a stochastic component due to chance and b) it considers only the first – and in most cases more interesting part – as a source of inequality. Moreover, Cox regression models allow for a flexible parameterization conditional to the specific research settings. For instance, addition of frailty parameters to the regression equation can help social scientists to reduce unobserved heterogeneity. This problem is especially encountered in social stratification research when comparing logit transition probabilities. In summary, this study contributes to the current literature by demonstrating the flexibility of Cox regression models in social stratification research in the area of health. It further provides valuable analytic avenues for theory-driven empirical research in social scientific health research as it uncovers how various sources of bias affect estimates.
Disciplines :
Sociologie & sciences sociales
Auteur, co-auteur :
PROCOPIO, Alessandro ;  University of Luxembourg > Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE)
SAMUEL, Robin  ;  University of Luxembourg > Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE) > Integrative Research Unit: Social and Individual Development (INSIDE)
Langue du document :
Anglais
Titre :
Are Cox Regression Models a Valuable Tool for Social Stratification Research on Health? A Simulation Study.
Date de publication/diffusion :
17 juillet 2019
Nombre de pages :
19
Nom de la manifestation :
8th ESRA Biennal Conference
Organisateur de la manifestation :
European Survey Research Association
Lieu de la manifestation :
Zagreb, Croatie
Date de la manifestation :
From 15-07-2019 to 19-07-2019
Manifestation à portée :
International
Disponible sur ORBilu :
depuis le 26 juillet 2019

Statistiques


Nombre de vues
293 (dont 25 Unilu)
Nombre de téléchargements
228 (dont 16 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu