[en] In this paper, we give a complete picture of Howe correspondence for the setting (O(E,b),Pin(E,b),Π), where O(E,b) is an orthogonal group (real or complex), Pin(E,b) is the two-fold Pin-covering of O(E,b), and Π is the spinorial representation of Pin(E,b). More precisely, for a dual pair (G,G′) in O(E,b), we determine explicitly the nature of its preimages (G̃,G′~) in Pin(E,b), and prove that apart from some exceptions, (G̃,G′~) is always a dual pair in Pin(E,b); then we establish the Howe correspondence for Π with respect to (G̃,G′~).
Disciplines :
Mathematics
Author, co-author :
GUERIN, Clément ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Liu, Gang; Université de Lorraine- Institut Elie Cartan > Mathématiques > Maître de Conférences
Merino, Allan; National University of Singapore > Mathematics > Research assistant
External co-authors :
yes
Language :
English
Title :
Dual pairs in the Pin-group and duality for the corresponding spinorial representation
Alternative titles :
[fr] Paires duales dans le groupe Pin et dualité pour la représentation spinorielle correspondante
Publication date :
23 July 2021
Journal title :
Algebras and Representation Theory
ISSN :
1386-923X
eISSN :
1572-9079
Publisher :
Springer, Dordrecht, Netherlands
Volume :
24
Issue :
6
Pages :
1625–1640
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR11405402 - Analysis And Geometry Of Low-dimensional Manifolds, 2016 (01/09/2017-28/02/2021) - Jean-marc Schlenker
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Brown, K.S.: Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer, New York. Corrected reprint of the 1982 original (1994)
Cheng, S.-J., Wang, W.: Dualities and representations of Lie superalgebras, volume 144 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)
Delanghe, R., Sommen, F., Soucek, V.: Clifford algebra and spinor–valued functions, volume 53 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht. A function theory for the Dirac operator, Related REDUCE software by F. Brackx and D. Constales, With 1 IBM–PC floppy disk (3.5 inch) (1992)
Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants, volume 255 of Graduate Texts in Mathematics. Springer, Dordrecht (2009)
Howe, R.: Preliminaries i. (unpublished)
Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313(2):539–570 (1989)
Howe, R.: Transcending classical invariant theory. J. Amer. Math. Soc. 2(3):535–552 (1989)
Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity–free actions and beyond. In: The Schur lectures (1992) (Tel Aviv), volume 8 of Israel Math. Conf. Proc., pp. 1–182. Bar–Ilan Univ., Ramat Gan (1995)
Knapp, A.W.: Lie groups beyond an introduction, volume 140 of Progress in Mathematics, 2nd edn. Birkhä user Boston, Inc., Boston (2002)
Li, J-S: Minimal representations & reductive dual pairs. In: Representation theory of Lie groups (Park City, UT, 1998), volume 8 of IAS/Park City Math. Ser., pp. 293–340. Amer. Math. Soc., Providence (2000)
Meinrenken, E.: Clifford algebras and Lie theory, volume 58 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg (2013)
Onishchik, A.L., Vinberg, È.B.: Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin. Translated from the Russian and with a preface by D. A. Leites (1990)
Schmidt, M.: Classification and partial ordering of reductive Howe dual pairs of classical Lie groups. J. Geom. Phys. 29(4):283–318 (1999)
Slupinski, M.J.: Dual pairs in Pin(p,q) and Howe correspondences for the spin representation. J. Algebra 202(2):512–540 (1998)
Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction, volume 11 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2004)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.