Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Two-stage RGB-based Action Detection using Augmented 3D Poses
PAPADOPOULOS, Konstantinos; GHORBEL, Enjie; BAPTISTA, Renato et al.
2019In 18th International Conference on Computer Analysis of Images and Patterns SALERNO, 3-5 SEPTEMBER, 2019
Peer reviewed
 

Documents


Texte intégral
Springer_Lecture_Notes_in_Computer_Science_CAIP.pdf
Preprint Auteur (2.76 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Action detection; LSTM; pose estimation; action proposals
Résumé :
[en] In this paper, a novel approach for action detection from RGB sequences is proposed. This concept takes advantage of the recent development of CNNs to estimate 3D human poses from a monocular camera. To show the validity of our method, we propose a 3D skeleton-based two-stage action detection approach. For localizing actions in unsegmented sequences, Relative Joint Position (RJP) and Histogram Of Displacements (HOD) are used as inputs to a k-nearest neighbor binary classifier in order to define action segments. Afterwards, to recognize the localized action proposals, a compact Long Short-Term Memory (LSTM) network with a de-noising expansion unit is employed. Compared to previous RGB-based methods, our approach offers robustness to radial motion, view-invariance and low computational complexity. Results on the Online Action Detection dataset show that our method outperforms earlier RGB-based approaches.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Sciences informatiques
Auteur, co-auteur :
PAPADOPOULOS, Konstantinos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
GHORBEL, Enjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BAPTISTA, Renato ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Two-stage RGB-based Action Detection using Augmented 3D Poses
Date de publication/diffusion :
2019
Nom de la manifestation :
18th International Conference on Computer Analysis of Images and Patterns
Date de la manifestation :
from 03-09-2019 to 05-09-2019
Titre de l'ouvrage principal :
18th International Conference on Computer Analysis of Images and Patterns SALERNO, 3-5 SEPTEMBER, 2019
Peer reviewed :
Peer reviewed
Projet FnR :
FNR10415355 - 3d Action Recognition Using Refinement And Invariance Strategies For Reliable Surveillance, 2015 (01/06/2016-31/05/2019) - Bjorn Ottersten
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 01 juillet 2019

Statistiques


Nombre de vues
268 (dont 12 Unilu)
Nombre de téléchargements
731 (dont 12 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
5

Bibliographie


Publications similaires



Contacter ORBilu