Article (Périodiques scientifiques)
Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future
Nawaz, Sayed Junaid; SHARMA, Shree Krishna; Wyne, Shurjeel et al.
2019In IEEE Access
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
QML_preprint.pdf
Postprint Éditeur (6.68 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
6G; B5G; Machine Learning; Quantum Communications; Quantum Machine Learning; Deep Learning
Résumé :
[en] The upcoming 5th Generation (5G) of wireless networks is expected to lay a foundation of intelligent networks with the provision of some isolated Artificial Intelligence (AI) operations. However, fully-intelligent network orchestration and management for providing innovative services will only be realized in Beyond 5G (B5G) networks. To this end, we envisage that the 6th Generation (6G) of wireless networks will be driven by on-demand self-reconfiguration to ensure a many-fold increase in the network performanceandservicetypes.Theincreasinglystringentperformancerequirementsofemergingnetworks may finally trigger the deployment of some interesting new technologies such as large intelligent surfaces, electromagnetic-orbital angular momentum, visible light communications and cell-free communications – tonameafew.Ourvisionfor6Gis–amassivelyconnectedcomplexnetworkcapableofrapidlyresponding to the users’ service calls through real-time learning of the network state as described by the network-edge (e.g., base-station locations, cache contents, etc.), air interface (e.g., radio spectrum, propagation channel, etc.), and the user-side (e.g., battery-life, locations, etc.). The multi-state, multi-dimensional nature of the network state, requiring real-time knowledge, can be viewed as a quantum uncertainty problem. In this regard, the emerging paradigms of Machine Learning (ML), Quantum Computing (QC), and Quantum ML (QML) and their synergies with communication networks can be considered as core 6G enablers. Considering these potentials, starting with the 5G target services and enabling technologies, we provide a comprehensivereviewoftherelatedstate-of-the-artinthedomainsofML(includingdeeplearning),QCand QML, and identify their potential benefits, issues and use cases for their applications in the B5G networks. Subsequently,weproposeanovelQC-assistedandQML-basedframeworkfor6Gcommunicationnetworks whilearticulatingitschallengesandpotentialenablingtechnologiesatthenetwork-infrastructure,networkedge, air interface and user-end. Finally, some promising future research directions for the quantum- and QML-assisted B5G networks are identified and discussed.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Nawaz, Sayed Junaid;  COMSATS University, Islamabad
SHARMA, Shree Krishna ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Wyne, Shurjeel;  COMSATS University, Islamabad
Patwary, Mohammad;  Birmingham City University, UK
ASADUZZAMAN, MD;  Staffordshire University, United Kingdom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future
Date de publication/diffusion :
avril 2019
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers, Piscataway, Etats-Unis - New Jersey
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 13 avril 2019

Statistiques


Nombre de vues
406 (dont 7 Unilu)
Nombre de téléchargements
2734 (dont 16 Unilu)

citations Scopus®
 
560
citations Scopus®
sans auto-citations
540
citations OpenAlex
 
616
citations WoS
 
364

Bibliographie


Publications similaires



Contacter ORBilu