Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A View-invariant Framework for Fast Skeleton-based Action Recognition Using a Single RGB Camera
GHORBEL, Enjie; PAPADOPOULOS, Konstantinos; BAPTISTA, Renato et al.
2019In 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, 25-27 February 2018
Peer reviewed
 

Documents


Texte intégral
AS7135649983488001547138561080_content_1.pdf
Preprint Auteur (1.16 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
View-invariant; Human action recognition; monocular camera; pose estimation
Résumé :
[en] View-invariant action recognition using a single RGB camera represents a very challenging topic due to the lack of 3D information in RGB images. Lately, the recent advances in deep learning made it possible to extract a 3D skeleton from a single RGB image. Taking advantage of this impressive progress, we propose a simple framework for fast and view-invariant action recognition using a single RGB camera. The proposed pipeline can be seen as the association of two key steps. The first step is the estimation of a 3D skeleton from a single RGB image using a CNN-based pose estimator such as VNect. The second one aims at computing view-invariant skeleton-based features based on the estimated 3D skeletons. Experiments are conducted on two well-known benchmarks, namely, IXMAS and Northwestern-UCLA datasets. The obtained results prove the validity of our concept, which suggests a new way to address the challenge of RGB-based view-invariant action recognition.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GHORBEL, Enjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PAPADOPOULOS, Konstantinos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BAPTISTA, Renato ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Pathak, Himadri
Demisse, Girum
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A View-invariant Framework for Fast Skeleton-based Action Recognition Using a Single RGB Camera
Date de publication/diffusion :
février 2019
Nom de la manifestation :
14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Date de la manifestation :
from 25-02-2019 to 27-02-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, 25-27 February 2018
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR10415355 - 3d Action Recognition Using Refinement And Invariance Strategies For Reliable Surveillance, 2015 (01/06/2016-31/05/2019) - Bjorn Ottersten
Disponible sur ORBilu :
depuis le 14 mars 2019

Statistiques


Nombre de vues
619 (dont 24 Unilu)
Nombre de téléchargements
527 (dont 17 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
1

Bibliographie


Publications similaires



Contacter ORBilu