Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
VIEW-INVARIANT ACTION RECOGNITION FROM RGB DATA VIA 3D POSE ESTIMATION
BAPTISTA, Renato; GHORBEL, Enjie; PAPADOPOULOS, Konstantinos et al.
2019In IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019
Peer reviewed
 

Documents


Texte intégral
ICASSP_Baptista_toappear.pdf
Postprint Auteur (466.37 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Pose Estimation; View-Invariance; LSTM
Résumé :
[en] In this paper, we propose a novel view-invariant action recognition method using a single monocular RGB camera. View-invariance remains a very challenging topic in 2D action recognition due to the lack of 3D information in RGB images. Most successful approaches make use of the concept of knowledge transfer by projecting 3D synthetic data to multiple viewpoints. Instead of relying on knowledge transfer, we propose to augment the RGB data by a third dimension by means of 3D skeleton estimation from 2D images using a CNN-based pose estimator. In order to ensure view-invariance, a pre-processing for alignment is applied followed by data expansion as a way for denoising. Finally, a Long-Short Term Memory (LSTM) architecture is used to model the temporal dependency between skeletons. The proposed network is trained to directly recognize actions from aligned 3D skeletons. The experiments performed on the challenging Northwestern-UCLA dataset show the superiority of our approach as compared to state-of-the-art ones.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BAPTISTA, Renato ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
GHORBEL, Enjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PAPADOPOULOS, Konstantinos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Demisse, Girum
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
VIEW-INVARIANT ACTION RECOGNITION FROM RGB DATA VIA 3D POSE ESTIMATION
Date de publication/diffusion :
mai 2019
Nom de la manifestation :
International Conference on Acoustics, Speech and Signal Processing
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Brighton, Royaume-Uni
Date de la manifestation :
12-17 May 2019
Titre de l'ouvrage principal :
IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR10415355 - 3d Action Recognition Using Refinement And Invariance Strategies For Reliable Surveillance, 2015 (01/06/2016-31/05/2019) - Bjorn Ottersten
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 14 mars 2019

Statistiques


Nombre de vues
317 (dont 26 Unilu)
Nombre de téléchargements
447 (dont 16 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
9

Bibliographie


Publications similaires



Contacter ORBilu