Article (Périodiques scientifiques)
Application of Shape Analysis on 3D Images - MRI of Renal Tumors
SCHILTZ, Jang; Giebel, Stefan; Graf, Norbert et al.
2012In Journal of Iranian Statistical Society, 11 (2), p. 131-146
Peer reviewed
 

Documents


Texte intégral
2012 JIRSS.pdf
Postprint Éditeur (693.17 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Neural networks; Radiology; Statistical Shape Analysis
Résumé :
[en] The image recognotion and the classification of objects according to the images are more in focus of interests, especially in medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is processed similarly. Here in this study, we propose the power of shape analysis, in conjunction with neural networks for reducing white noise instead of searching an optimal metric, to support the user in his evaluation of MRI of renal tumors. Therapy of renal tumors in childhood bases on therapy optimizing SIOP(Society of Pediatric Oncology and Hematology)-study protocols in Europe. The most frequent tumor is the nephroblastoma. Other tumor entities in the retroperitoneum are clear cell sarcoma, renal cell carcinoma and extrarenal tumors, especially neuroblastoma. Radiological diagnosis is produced with the help of cross sectional imaging methods (computertomography CT or Magnetic Resonance Images MRI). Our research is the first mathematical approach on MRI of retroperitoneal tumors (n=108). We use MRI in 3 planes and evaluate their potential to differentiate other types of tumor by Statistical Shape Analysis. Statistical shape Analysis is a methology for analyzing shapes in the presence of randomness. It allows to study two- or more dimensional objects, summarized according to key points called landmarks, with a possible correction of size and position of the object. To get the shape of an object without information about position and size, centralisation and standardisation procedures are used in some metric space. This approach provides an objective methodology for classification whereas even today in many applications the decision for classifying according to the appearance seems at most intuitive. We determine the key points or three dimensional landmarks of retroperitoneal tumors in childhood by using the edges of the platonic body (C60) and test the difference between the groups (nephroblastoma versus non-nephroblastoma).
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
SCHILTZ, Jang ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Luxembourg School of Finance (LSF)
Giebel, Stefan
Graf, Norbert;  University hospital of Homburg > Department of Pediatric Oncology and Hematology
Nourkami, Nasenien;  University Hospital of Homburg > Department of Pediatric Oncology and Hematology
Leuschner, Ivo;  Schleswig-Holstein University Campus Kiel > Department of Paleopathology
Schenk, Jens-Peter;  University hospital of Heidelberg > Division of Pediatric Radiology
Langue du document :
Anglais
Titre :
Application of Shape Analysis on 3D Images - MRI of Renal Tumors
Date de publication/diffusion :
2012
Titre du périodique :
Journal of Iranian Statistical Society
ISSN :
1726-4057
Volume/Tome :
11
Fascicule/Saison :
2
Pagination :
131-146
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 11 juillet 2013

Statistiques


Nombre de vues
116 (dont 3 Unilu)
Nombre de téléchargements
156 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
0

Bibliographie


Publications similaires



Contacter ORBilu