[en] The application of linear precoding at the gateway side enables broadband multibeam satellite systems to use more aggressive frequency reuse patterns increasing the overall capacity of future High Throughput Satellites (HTS). However, although some previous works about precoding consider imperfect CSIT (Chanel State Information at the Transmitter) adding some CSI estimation errors, that is not the main cause of CSI degradation. In practice, receivers can only detect and estimate a few coefficients of the CSI vector being the other nullified, replaced by zeros. This introduces errors in the SINR calculation by the gateway that lead to the assignment of Modulation and Coding Schemes (MCS) over the decoding possibilities of the users, increasing the rate of erroneous frames. In this work, the errors in the SINR calculation caused by the nullification of the CSI are analyzing statistically and geographically using a radiation diagram of 245 beams over Europe. Furthermore, a solution based on a link adaptation algorithm with a per user adaptive margin is proposed, helping to achieve the QEF (Quasi-error Free) target of DVB-S2X systems.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VUPPALA, Satyanarayana ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Sellathurai, Mathini
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Optimal Deployment of Base Stations in Cognitive Satellite Terrestrial Networks
Date de publication/diffusion :
2018
Nom de la manifestation :
ITG Workshop on Smart Antennas (WSA 2018)
Lieu de la manifestation :
Bochum, Allemagne
Date de la manifestation :
10-09-2018 to 12-09-2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC)
W. W. Wu, “Satellite communications,” Proc. IEEE, vol. 85, pp. 998-1010, Jun. 1997.
A. Gharanjik, M. R. B. Shankar, P. D. Arapoglou, M. Bengtsson, and B. Ottersten, “Precoding design and user selection for multibeam satellite channels,” in 2015 IEEE 16th Int. Workshop on Signal Processing Advances in Wireless Commun. (SPAWC), June 2015, pp. 420-424.
M. A. Vazquez, A. Perez-Neira, D. Christopoulos, S. Chatzinotas, B. Ottersten, P. D. Arapoglou, A. Ginesi, and G. Tarocco, “Precoding in multibeam satellite communications: Present and future challenges,” IEEE Wireless Commun., vol. 23, no. 6, pp. 88-95, December 2016.
S. L. Kota, “Hybrid/integrated networking for NGN services,” in 2011 2nd Int. Conf. on Wireless Commun., Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology (Wireless VITAE), Feb 2011, pp. 1-6.
S. Morosi, S. Jayousi, and E. D. Re, “Cooperative delay diversity in hybrid satellite/terrestrial DVB-SH system,” in 2010 IEEE Int. Conf. on Commun., May 2010, pp. 1-5.
N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” IEEE Trans. on Information Theory, vol. 52, no. 5, pp. 1813-1827, May 2006.
A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” Proc. of the IEEE, vol. 97, no. 5, pp. 894-914, May 2009.
Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on spectrum sensing for cognitive radio: Challenges and solutions,” EURASIP Journal on Applied Signal Processing, vol. 2010, 2010.
S. Kandeepan, L. D. Nardis, M. G. D. Benedetto, A. Guidotti, and G. E. Corazza, “Cognitive satellite terrestrial radios,” in 2010 IEEE Global Telecommunications Conf. GLOBECOM 2010, Dec 2010, pp. 1-6.
S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Cognitive radio techniques for satellite communication systems,” in 2013 IEEE 78th Vehicular Technology Conf. (VTC Fall), Sept 2013, pp. 1-5.
S. Vassaki, M. I. Poulakis, A. D. Panagopoulos, and P. Constantinou, “Power allocation in cognitive satellite terrestrial networks with qos constraints,” IEEE Commun. Letters, vol. 17, no. 7, pp. 1344-1347, July 2013.
E. Lagunas, S. K. Sharma, S. Maleki, S. Chatzinotas, and B. Ottersten, “Resource allocation for cognitive satellite communications with incumbent terrestrial networks,” IEEE Trans. on Cognitive Commun. and Networking, vol. 1, no. 3, pp. 305-317, Sept 2015.
K. An, M. Lin, W.-P. Zhu, Y. Huang, and G. Zheng, “Outage performance of cognitive hybrid satellite terrestrial networks with interference constraint,” IEEE Trans. on Vehicular Technology, vol. 65, no. 11, pp. 9397-9404, 2016.
S. Maleki, S. Chatzinotas, B. Evans, K. Liolis, J. Grotz, A. Vanelli-Coralli, and N. Chuberre, “Cognitive spectrum utilization in Ka band multibeam satellite communications,” IEEE Commun. Mag., vol. 53, no. 3, pp. 24-29, Mar. 2015.
J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122-3134, Nov. 2011.
R. W. Heath, M. Kountouris, and T. Bai, “Modeling heterogeneous network interference using Poisson point processes,” IEEE Trans. on Signal Processing, vol. 61, no. 16, pp. 4114 - 4126, Aug. 2013.
R. Ramanathan, J. Redi, C. Santivanez, D. Wiggins, and S. Polit, “Ad hoc networking with directional antennas: a complete system solution,” IEEE Journal on Sel. Areas in Commun., vol. 23, no. 3, pp. 496-506, March 2005.
H. Wang and M. C. Reed, “Tractable model for heterogeneous cellular networks with directional antennas,” in 2012 Australian Commun. Theory Workshop (AusCTW), Jan 2012, pp. 61-65.
T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100-1114, Feb. 2015.
C. Psomas, M. Mohammadi, I. Krikidis, and H. A. Suraweera, “Impact of directionality on interference mitigation in full-duplex cellular networks,” IEEE Trans. on Wireless Commun., vol. 16, no. 1, pp. 487-502, Jan 2017.
O. Y. Kolawole, S. Vuppala, M. Sellathurai, and T. Ratnarajah, “On the performance of cognitive satellite-terrestrial networks,” IEEE Transactions on Cognitive Communications and Networking, vol. pp, Oct. 2017.
G. Zheng, S. Chatzinotas, and B. Ottersten, “Multi-gateway cooperation in multibeam satellite systems,” in 2012 IEEE 23rd Int. Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), Sept 2012, pp. 1360-1364.
D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast multigroup precoding and user scheduling for frame-based satellite communications,” IEEE Trans. on Wireless Commun., vol. 14, no. 9, pp. 4695-4707, Sept 2015.
M. Haenggi, Stochastic geometry for wireless networks. Cambridge University Press, 2012.
A. Abdi, W. C. Lau, M. S. Alouini, and M. Kaveh, “A new simple model for land mobile satellite channels: First- and second-order statistics,” IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 519-528, May 2003.
G. Zheng, S. Chatzinotas, and B. Ottersten, “Generic optimization of linear precoding in multibeam satellite systems,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 2308-2320, Jun. 2012.
G. Fraidenraich, O. Levêque, and J. M. Cioffi, “On the MIMO channel capacity for the nakagami-m channel,” in Proc. IEEE 50th Annual Globecom Conf. (GLOBECOM'07), 2007, pp. 3612 - 3616.
M. Haenggi, “A geometric interpretation of fading in wireless networks: Theory and applications,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5500 - 5510, Dec. 2008.
A. M. Hunter, J. G. Andrews, and S. Weber, “Transmission capacity of ad hoc networks with spatial diversity,” IEEE Trans. on Wireless Commun., vol. 7, no. 12, pp. 5058-5071, December 2008.
S. Chatzinotas, M. A. Imran, and C. Tzaras, “On the capacity of variable density cellular systems under multicell decoding,” IEEE Communication Letters,, vol. 12, no. 7, pp. 496-498, Jul. 2008.
Y. S. Soh, T. Q. S. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous cellular networks,” IEEE Journal on Sel. Areas in Commun., vol. 31, no. 5, pp. 840-850, May 2013.
S. Biswas, S. Vuppala, and T. Ratnarajah, “On the performance of mmwave networks aided by wirelessly powered relays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 8, pp. 1522-1537, Dec. 2016.