Article (Périodiques scientifiques)
Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease
GLAAB, Enrico; TREZZI, Jean-Pierre; Greuel, Andrea et al.
2019In Neurobiology of Disease, 124 (1), p. 555-562
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
glaab2019nbd_imaging_metabolomics.pdf
Postprint Éditeur (846.47 kB)
Télécharger

The original publication is available at https://doi.org/10.1016/j.nbd.2019.01.003


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Parkinson; neuroimaging; metabolomics; PET; machine learning; integration; statistics; differential abundance; omics; combination; disease; prediction
Résumé :
[en] The diagnosis of Parkinson's disease (PD) often remains a clinical challenge. Molecular neuroimaging can facilitate the diagnostic process. The diagnostic potential of metabolomic signatures has recently been recognized. Methods: We investigated whether the joint data analysis of blood metabolomics and PET imaging by machine learning provides enhanced diagnostic discrimination and gives further pathophysiological insights. Blood plasma samples were collected from 60 PD patients and 15 age- and gender-matched healthy controls. We determined metabolomic profiles by gas chromatography coupled to mass spectrometry (GC-MS). In the same cohort and at the same time we performed FDOPA PET in 44 patients and 14 controls and FDG PET in 51 patients and 16 controls. 18 PD patients were available for a follow-up exam after one year. Both data sets were analysed by two machine learning approaches, applying either linear support vector machines or random forests within a leave-one-out cross-validation and computing receiver operating characteristic (ROC) curves. Results: In the metabolomics data, the baseline comparison between cases and controls as well as the followup assessment of patients pointed to metabolite changes associated with oxidative stress and inflammation. For the FDOPA and FDG PET data, the diagnostic predictive performance (DPP) in the ROC analyses was highest when combining imaging features with metabolomics data (ROC AUC for best FDOPA + metabolomics model: 0.98; AUC for best FDG + metabolomics model: 0.91). DPP was lower when using only PET attributes or only metabolomics signatures. Conclusion: Integrating blood metabolomics data combined with PET data considerably enhances the diagnostic discrimination power. Metabolomic signatures also indicate interesting disease-inherent changes in cellular processes, including oxidative stress response and inflammation.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Neurologie
Biotechnologie
Auteur, co-auteur :
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
TREZZI, Jean-Pierre ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Greuel, Andrea
Jäger, Christian  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Hodak, Zdenka
Drzezga, Alexander
Timmermann, Lars
Tittgemeyer, Marc
Diederich, Nico Jean
Eggers, Carsten
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease
Date de publication/diffusion :
2019
Titre du périodique :
Neurobiology of Disease
ISSN :
0969-9961
eISSN :
1095-953X
Maison d'édition :
Elsevier, Atlanta, Etats-Unis - Californie
Volume/Tome :
124
Fascicule/Saison :
1
Pagination :
555-562
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Projet FnR :
FNR7643563 - Mitochondrial Endophenotypes Of Pd, 2013 (01/01/2015-31/12/2017) - Rudi Balling
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 07 janvier 2019

Statistiques


Nombre de vues
254 (dont 26 Unilu)
Nombre de téléchargements
302 (dont 8 Unilu)

citations Scopus®
 
59
citations Scopus®
sans auto-citations
52
citations OpenAlex
 
68
citations WoS
 
51

Bibliographie


Publications similaires



Contacter ORBilu